Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T09:11:07.907Z Has data issue: false hasContentIssue false

Transition metal ions in silicate melts. IV. Cobalt in sodium silicate and related glasses

Published online by Cambridge University Press:  03 March 2011

Carolynn Nelson
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
William B. White
Affiliation:
Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Optical measurements have been made on glasses quenched from a series of sodium silicate melts as well as germanate, borate, and phosphate liquids containing CoO. The spectral data show that Co+2 is the species stabilized in oxide melts heated in air. The observed bands occur at 2700–3850, 5750–7900, and 15 500–18 600 cm-1. The independence of the optical parameters from melt composition and known melt structures, the high relative intensity of the highfrequency band, and the low calculated value of the Racah B parameter relative to the free ion value indicate that Co+2 forms a distinct tetrahedral complex in the quenched melt.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nelson, C., Furukawa, T., and White, W. B., Mater. Res. Bull. 18, 959 (1983).CrossRefGoogle Scholar
2Nelson, C. and White, W. B., Geochim. Cosmochim. Acta 44, 887 (1980).CrossRefGoogle Scholar
3Fox, K., Furukawa, T., and White, W. B., Phys. Chem. Glasses 23, 169 (1982).Google Scholar
4Nelson, C. and White, W. B., submitted to Geochim. Cosmochim. Acta.Google Scholar
5Bamford, C. R., Phys. Chem. Glasses 3, 189 (1962).Google Scholar
6Juza, R., Seidel, H., and Tiedemann, J., Angew. Chem. 5, 85 (1966).CrossRefGoogle Scholar
7Armstrong, D. R., Fortune, R., and Perkins, P. G., J. Non-Cryst. Solids 24, 313 (1977).CrossRefGoogle Scholar
8Berretz, M. and Holt, S. L., J. Inorg. Nucl. Chem. 39, 49 (1974).CrossRefGoogle Scholar
9Berretz, M. and Holt, S. L., J. Am. Ceram. Soc. 61, 136 (1978).CrossRefGoogle Scholar
10Duffy, J. A., J. Am. Ceram. Soc. 60, 440 (1977).CrossRefGoogle Scholar
11Ingram, M. D. and Duffy, J. A., J. Am. Ceram. Soc. 53, 317 (1970).CrossRefGoogle Scholar
12Schultz, P. C., J. Am. Ceram. Soc. 57, 309 (1974).CrossRefGoogle Scholar
13Wood, D. L. and Remeika, J. P., J. Chem. Phys. 46, 3595 (1967).CrossRefGoogle Scholar
14Low, W., Phys. Rev. 109, 256 (1958).CrossRefGoogle Scholar
15Pappalardo, R., Wood, D. L., and Linares, R. C., J. Chem. Phys. 35, 2041 (1961).CrossRefGoogle Scholar
16Weakliem, H. A., J. Chem. Phys. 36, 2117 (1962).CrossRefGoogle Scholar
17Koidl, P., Phys. Rev. B 15, 2493 (1977).CrossRefGoogle Scholar
18Ferguson, J., Wood, D. L., and Knox, K., J. Chem. Phys. 39, 881 (1963).CrossRefGoogle Scholar
19Ferguson, J., J. Chem. Phys. 39, 116 (1963).CrossRefGoogle Scholar
20Ballhausen, C. J. and Jdrgensen, C. K., Acta Chem. Scand. 9, 397 (1955).CrossRefGoogle Scholar
21Stahl-Brada, R. and Low, W., Phys. Rev. 113, 775 (1959).CrossRefGoogle Scholar
22Brawer, S. A. and White, W. B., J. Chem. Phys. 63, 2421 (1975).CrossRefGoogle Scholar
23Bums, R. G., Mineralogical Applications of Crystal Field Theory (Cambridge U. P., Cambridge, 1970), pp. 224.Google Scholar
24Tanabe, Y. and Sugano, S., J. Phys. Soc. Jpn. 9, 753 (1954).CrossRefGoogle Scholar
25Moore, C. E., Natl. Bur. Stand. U.S. Circ. 467, 98 (1952).Google Scholar
26Shannon, R. D. and Prewitt, C. T., Acta Cryst. B 25, 925 (1969).CrossRefGoogle Scholar