Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T22:27:32.311Z Has data issue: false hasContentIssue false

Transient kinetics of nucleation and crystallization: Part I. Nucleation

Published online by Cambridge University Press:  31 January 2011

G. Shi
Affiliation:
Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125
J.H. Seinfeld
Affiliation:
Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125
Get access

Abstract

Analytical results obtained for the transient kinetics of nucleation enable one to interpret N(gd,t), the accumulated number concentration of clusters at the instrumentally detectable size, gd. The new results enable one to extract kinetic and thermodynamic parameters of nucleation from experimentally measured cluster concentrations and to test nucleation theories experimentally. An approach to estimate the mean time to form the first nucleated cluster in a given sample is also presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Turnbull, D., J. Chem. Phys. 18, 198 (1950); Comtemp. Phys. 10, 473 (1969); G. L. Olson and J. A. Roth, Mater. Sci. Rep. 3, 1 (1988) and references therein.CrossRefGoogle Scholar
2.Roorda, S. and Sinke, W. C., Appl. Surf. Sci. 36, 588 (1989).CrossRefGoogle Scholar
3.Kuni, Y., Tabe, M., and Kajiyama, K., J. Appl. Phys. 54, L23 (1980); M. Tamura, H. Tamura, and T. Tokuyama, Jpn. J. Appl. Phys. 19, 2847 (1983); H. Ishiwara, A. Tamba, and S. Turukawa, Appl. Phys. Lett. 48, 733 (1986); H. Ishiwara, H. Yamamoto, and S.Turukawa, Appl. Phys. Lett. 43, 1028 (1983); T.Dan, H.Ishiwara, and S.Furukawa, Appl. Phys. Lett. 53, 2626 (1988); M.Miyao, M.Moniwa, K.Kusukawa, and W.Sinke, J. Appl. Phys. 64, 3018 (1983).Google Scholar
4.Korin, D. B., Reif, R., and Mikic, B., Thin Solid Films 167, 101 (1988); R. B. Inverson and R. Reif, J. Appl. Phys. 62, 1675 (1987); R. B. Inverson and R. Reif, Appl. Phys. Lett. 52, 645 (1988).CrossRefGoogle Scholar
5.Roorda, S., Kammann, P., Sinke, W. C., Walle, G. F. A., and van, A. A.Gorkum, Mater. Lett. 9, 259 (1990).CrossRefGoogle Scholar
6.Suzuki, M., Hiramoto, M., Oyuura, M., Kamisaka, W., and Hasegawa, S., Jpn. J. Appl. Phys. 27, L1380 (1988); S. Kambayash, S. Onga, I. Mizushima, K. Higachi, and H. Kuwano, Extended Abs. of the 21st Conf. on Solid State Devices and Mater., Tokyo, 1989, p. 169; K. Zallama, P. Germain, S. Squeland, J. C. Bourjoin, and P. A. Thomas, Appl. Phys. 50, 6995 (1979); U. Köster, Phys. Status Solidi 48, 313 (1978); C. C. Pai, S. S. Lau, and I. Suni, Thin Solid Films 109, 263 (1983); R. Bisaro, J. Magarino, Y. Pastol, P. Germain, and K. Zellama, Phys. Rev. B 40, 7655 (1989); J. S. Im and H. A. Atwater, Appl. Phys. Lett. 57, 1766 (1990); I. W. Wu, A. Chiang, M. Fuse, L. Ovecoglu, and T. Y. Huang, J. Appl. Phys. 65, 4036 (1989); E. E. Marinero, Appl. Surf. Sci. 43, 117 (1989).CrossRefGoogle Scholar
7.Uhlmann, D. R., J. Non-Cryst. Solids 25, 73 (1977); J. Non-Cryst. Solids 7, 73 (1972).CrossRefGoogle Scholar
8.Kelton, K. F., Greer, A. L., and Thompson, C. V., J. Chem. Phys. 79, 6261 (1983); K. G. Harstad, JPL Tech. Mem., 33–666, Jet Propulsion Laboratory, Pasadena, CA, January 1974.CrossRefGoogle Scholar
9.Voltera, V. and Cooper, A. R., J. Non-Cryst. Solids 74, 85 (1985).CrossRefGoogle Scholar
10.Feder, J., Russell, K. C., Lothe, J., and Pound, G. M., Adv. Phys. 5, 111 (1966).CrossRefGoogle Scholar
11.Kashchiev, D., Surf. Sci. 14, 209 (1969).CrossRefGoogle Scholar
12.Shi, G., Seinfeld, J. H., and Okuyama, K., Phys. Rev. A 41, 2101 (1990).CrossRefGoogle Scholar
13.Trankaus, H. and Yoo, M. H., Philos. Mag. A 55, 269 (1987).CrossRefGoogle Scholar
14.Shneidman, V. A., Sov. Phys. Tech. Phys. 33, 1338 (1988).Google Scholar
15.Shi, G. and Seinfeld, J. H., J. Chem. Phys. 92 (12), 9033 (1990).CrossRefGoogle Scholar
16.Bender, C. M. and Orszag, S. A., Advanced Mathematical Methods for Scientists and Engineers (McGraw-Hill Co., New York, 1978).Google Scholar
17. The value of θ for a–Si is generally unknown since the a–Si/c–Si interfacial specific energy σ is not accurately known. For example, model-building studies of planar interfaces separating bulklike c–Si and a–Si yield 0.12 eV/atom (about 112 erg/cm2) and experimental studies give a 0.04 eV/atom as cited by Tsao, J. Y. and Peercy, P. S., Phys. Rev. Lett. 58, 2782 (1987); values of 430 erg/cm2 for σ were used in Ref. 2; 219 to 275 erg/cm2 for σ was used by R. F. Wood, D. H. Lowndes, and J. Marayan, Appl. Phys. Lett. 44, 770 (1984); 125 erg/cm2 for σ was used by D. Stock, H. D. Geiler, and K. Hehl, Phys. Status Solidi (a) 89, 2782 (1987). For σ in the range of 40 to 400 erg/cm2, θ = 25σ/T varies from 1 to 10 for T = 1000 K.CrossRefGoogle Scholar
18.Meng, W. J., Nieh, C. W., Ma, E., Fultz, B., and Johnson, W. L., Mater. Sci. Eng. 97, 871 (1988).CrossRefGoogle Scholar
19.Highmore, R. J., Greer, A. L., Leake, J. A., and Evetts, J. E., Mater. Lett. 6, 401 (1988); R. J. Highmore, Philos. Mag. B 62, 455 (1990).CrossRefGoogle Scholar
20. See reviews in Christian, J. W., The Theory of Phase Transformations in Metals and Alloys, 2nd ed. (Pergamon, Oxford, 1975).Google Scholar
21.Gutzow, I., Contemp. Phys. 21, 121 (1980).CrossRefGoogle Scholar