Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T14:27:13.477Z Has data issue: false hasContentIssue false

Transformation kinetics for mullite in kaolin–Al2O3 ceramics

Published online by Cambridge University Press:  31 January 2011

Yung-Feng Chen
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan
Moo-Chin Wang
Affiliation:
Department of Mechanical Engineering, National Kaohsiung University of Applied Sciences, 415 Chien-Kung Road, Kaohsiung 80782, Taiwan
Min-Hsiung Hon
Affiliation:
Department of Materials Science and Engineering, National Cheng Kung University, 1 Ta-Hsueh Road, Tainan 70101, Taiwan
Get access

Abstract

Transformation kinetics of mullite formation in kaolin–Al2O3 ceramics was studied by x-ray diffraction, transmission electron microscopy, and energy dispersion spectrometry. The mullitization process of kaolin–Al2O3 ceramics is described by two stages; one is the primary mullite transformation at 1273 to 1573 K, and the other is the secondary mullite formation at 1573 to 1873 K. The activation energy of 1164.6 kJ mol-1 obtained for the secondary mullite formation is lower than 1356.9 kJ mol-1 for the primary mullite transformation by the general form of the Johnson–Mehl–Avrami equation. The lower value of growth morphology parameter strongly supports that in the secondary mullite formation the added alumina is dissolved into glassy phase and the mullite is then precipitated.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Aksay, I.A., Dabbs, D.M., and Sarikaya, M., J. Am. Ceram. Soc. 74, 2343 (1991).CrossRefGoogle Scholar
2.Okada, K. and Otsuka, N., Ceram. Bull. Jpn. 70(10), 1633 (1991).Google Scholar
3.Lee, J.S. and Yu, S.C., Mater. Res. Bull. 27(10), 405 (1992).CrossRefGoogle Scholar
4.Takei, T., Kamesshima, Y., Yasumori, A., and Okada, K., J. Am. Ceram. Soc. 82, 2876 (1999).CrossRefGoogle Scholar
5.Hildmann, B.O., Schneider, H., and Schmücker, M., J. Eur. Ceram. Soc. 16, 287 (1996).CrossRefGoogle Scholar
6.Li, D.X. and Thomson, W.J., J. Am. Ceram. Soc. 73, 964 (1990).CrossRefGoogle Scholar
7.Sung, Y.M., Acta Mater. 48, 2157 (2000).CrossRefGoogle Scholar
8.Sung, Y.M., J. Mater. Sci. Lett. 20, 1433 (2001).CrossRefGoogle Scholar
9.Tkalcec, E., Nass, R., Schmauch, J., Schmidt, H., Kurajica, S., Bezjak, A., and Ivankovic, H., J. Non-Cryst. Solids 223, 57 (1998).CrossRefGoogle Scholar
10.Sundaresan, S. and Aksay, I.A., J. Am. Ceram. Soc. 74, 2388 (1991).CrossRefGoogle Scholar
11.Campos, A.L., Silva, N.T., Melo, F.C.L., Oliveria, M.A.S., and Thim, G.P., J. Non-Cryst. Solids. 304, 19 (2002).CrossRefGoogle Scholar
12.Hong, S.H. and Messing, G.L., J. Am. Ceram. Soc. 80, 1551 (1997).CrossRefGoogle Scholar
13.Hong, S.H and Messing, G.L., J. Eur. Ceram. Soc. 19, 521 (1999).CrossRefGoogle Scholar
14.Boccaccini, A.R., Khalil, T.K., and Bücker, M., Mater. Lett. 38, 116 (1999).CrossRefGoogle Scholar
15.Wei, W.C. and Halloran, J.W., J. Am. Ceram. Soc. 71, 581 (1998).CrossRefGoogle Scholar
16.Matsuda, O., Watari, T., Torikai, T., Yamasaki, Y., and Katsuki, H., J. Ceram. Soc. Jpn. Int. Ed. 100, 719 (1992).Google Scholar
17.Brindly, G.W. and Nakahira, M., J. Am. Ceram. Soc. 42, 311 (1959).CrossRefGoogle Scholar
18.Brindly, G.W. and Nakahira, M., J. Am. Ceram. Soc. 42, 315 (1959).Google Scholar
19.Brindly, G.W. and Nakahira, M., J. Am. Ceram. Soc. 40, 346 (1957).CrossRefGoogle Scholar
20.Chen, Y.F., Wang, M.C., and Hon, M.H., J. Eur. Ceram. Soc (in press).Google Scholar
21.Chen, Y.F., Wang, M.C., and Hon, M.H., J. Mater. Res. (in press).Google Scholar
22.Chen, Y.F., Wang, M.C., and Hon, M.H., J. Ceram. Soc. Jpn. (submitted for publication).Google Scholar
23.Li, D.X. and Thomson, W.J., J. Mater. Res. 6, 819 (1991).CrossRefGoogle Scholar
24.Liu, K.C, Thomas, G., Caballero, A., Moya, J.S., and Aza, S.D., Acta Metall. Mater. 42, 489 (1994).CrossRefGoogle Scholar
25.Hamano, K., Nakajima, H., Okuda, F., and Konuma, M., J. Ceram. Soc. Jpn. Int. Ed. 102, 80 (1994).Google Scholar
26.Sainz, M.A., Serrano, F.J., Amigo, J.M., Bastida, J., and Caballero, A., J. Eur. Ceram. Soc. 20, 403 (2000).CrossRefGoogle Scholar
27.Marotta, A., Buri, A., and Valenti, G.L., J. Mater. Sci. 13, 2483 (1978).CrossRefGoogle Scholar
28.Avrami, M., J. Chem. Phys. 7, 1103 (1939).CrossRefGoogle Scholar
29.Wen, S.B., Wu, N.C., Yand, S., and Wang, M.C., J. Mater. Res. 14, 3559 (1999).CrossRefGoogle Scholar
30.Avrami, M., J. Chem. Phys. 9, 177 (1941).CrossRefGoogle Scholar
31.Freiman, S.W. and Hench, L.L., J. Am. Ceram. Soc. 51, 382 (1987).CrossRefGoogle Scholar
32.Wang, M.C. and Hon, M.H., J. Ceram. Soc. Jpn. 100, 1285 (1992).CrossRefGoogle Scholar
33.Gualtieri, A., Bellotto, M., Aetioli, G., and Clark, S.M., Phys. Chem. Miner. 22, 215 (1995).CrossRefGoogle Scholar
34.Kleebe, H.J., Siegelin, F., Straubinger, T., and Ziegler, G., J. Eur. Ceram. Soc. 21, 2521 (2001).CrossRefGoogle Scholar
35.Schneider, H., Okada, K., and Pask, J.A., Mullite and Mullite Ceramics (Wiley, New York, 1994), p. 100.Google Scholar