Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-22T22:41:58.186Z Has data issue: false hasContentIssue false

Transformation entropy change and precursor phenomena in Ni-rich Ti–Ni shape memory alloys

Published online by Cambridge University Press:  25 September 2017

Kodai Niitsu*
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Yuta Kimura
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
Ryosuke Kainuma
Affiliation:
Department of Materials Science, Graduate School of Engineering, Tohoku University, Sendai 980-8579, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Many issues concerning the transformation behaviors in the Ni-rich Ti–Ni system remain unresolved, such as the isothermal nature of the B19′-martensitic and R-phase transformations and the precursor phenomena in the B2-parent phase. To clarify the origins of these behaviors, we investigated the transformation latent heat, specific heat, and superelastic behaviors of several Ni-rich Ti–Ni alloys in terms of the entropy change. An anomalous, very wide hump in the specific heat was detected for the B2-parent phase, which can likely be attributed to the precursor phenomenon in the B2-parent phase. In the critical region where the anomalous hump intersects the B19′-martensitic transformation, some evidences of the R-phase transformation were observed, such as a tweed-like microstructure and a specific heat peak with first-order-transformation characteristics. These findings suggest a strong relationship between the R phase and the precursor state in the B2-parent phase.

Type
Invited Paper
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present Address: RIKEN, Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan.

Contributing Editor: Yang-T. Cheng

References

REFERENCES

Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, U.K., 1998).Google Scholar
Zhang, Z., Wang, Y., Wang, D., Zhou, Y., Otsuka, K., and Ren, X.: Phase diagram of Ti50−x Ni50+x : Crossover from martensite to strain glass. Phys. Rev. B 81, 224102 (2010).Google Scholar
Sarkar, S., Ren, X., and Otsuka, K.: Evidence for strain glass in the ferroelastic–martensitic system Ti50−x Ni50+x . Phys. Rev. Lett. 95, 205702 (2005).Google Scholar
Wang, Y., Ren, X., Otsuka, K., and Saxena, A.: Evidence for broken ergodicity in strain glass. Phys. Rev. B 76, 132201 (2007).Google Scholar
Niitsu, K., Kimura, Y., Xu, X., and Kainuma, R.: Composition dependences of entropy change and transformation temperatures in Ni-rich Ti–Ni system. Shap. Mem. Superelasticity 1, 124 (2015).Google Scholar
Fukuda, T., Yoshida, S., and Kakeshita, T.: Isothermal nature of the B2–B19′ martensitic transformation in a Ti–51.2 Ni (at.%) alloy. Scr. Mater. 68, 984 (2013).Google Scholar
Ji, Y., Wang, D., Ding, X., Otsuka, K., and Ren, X.: Origin of an isothermal R-martensite formation in Ni-rich Ti–Ni solid solution: Crystallization of strain glass. Phys. Rev. Lett. 114, 055701 (2015).Google Scholar
Niitsu, K., Omori, T., and Kainuma, R.: Stress-induced transformation behaviors at low temperatures in Ti–51.8 Ni (at.%) shape memory alloy. Appl. Phys. Lett. 102, 231915 (2013).Google Scholar
Hara, T., Ohba, T., Okunishi, E., and Otsuka, K.: Structural study of R-phase in Ti–50.23 at.% Ni and Ti–47.75 at.% Ni–1.50 at.% Fe alloys. Mater. Trans. Japan Inst. Metals 38, 11 (1997).Google Scholar
Choi, M-S., Fukuda, T., Kakeshita, T., and Mori, H.: Incommensurate–commensurate transition and nanoscale domain-like structure in iron doped Ti–Ni shape memory alloys. Philos. Mag. 86, 67 (2006).Google Scholar
Choi, M-S., Ogawa, J., Fukuda, T., and Kakeshita, T.: Stability of the B2-type structure and R-phase transformation behavior of Fe or Co doped Ti–Ni alloys. Mater. Sci. Eng., A 438–440, 527 (2006).Google Scholar
Kimura, Y., Xu, X., Niitsu, K., Omori, T., and Kainuma, R.: Martensitic transformations and superelastic behavior at low temperatures in Ti50−x Ni40+x Cu10 shape memory alloys. Mater. Trans. 57, 269 (2016).Google Scholar
Kakeshita, T., Fukuda, T., Tetsukawa, H., Saburi, T., Kindo, K., Takeuchi, T., Honda, M., Endo, S., Taniguchi, T., and Miyako, Y.: Negative temperature coefficient of electrical resistivity in B2-type Ti–Ni alloys. Jpn. J. Appl. Phys. 37, 2535 (1998).Google Scholar
Murakami, Y. and Shindo, D.: Lattice modulation preceding to the R-phase transformation in a Ti50Ni48Fe2 alloy studied by TEM with energy-filtering. Mater. Trans. JIM 40, 1092 (1999).Google Scholar
Niitsu, K.: Superelastic properties at cryogenic temperatures in Ti–Ni, Ni–Co–Mn–In and Cu–Al–Mn shape memory alloys. Ph.D. thesis, Tohoku University, Japan, 2014.Google Scholar
Niitsu, K., Xu, X., Umetsu, R.Y., and Kainuma, R.: Stress-induced transformations at low temperatures in a Ni45Co5Mn36In14 metamagnetic shape memory alloy. Appl. Phys. Lett. 103, 242406 (2013).Google Scholar
Xu, X., Ito, W., Umetsu, R.Y., Kainuma, R., and Ishida, K.: Anomaly of critical stress in stress-induced transformation of NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 95, 181905 (2009).Google Scholar
Ito, W., Ito, K., Umetsu, R.Y., Kainuma, R., Koyama, K., Watanabe, K., Fujita, A., Oikawa, K., Ishida, K., and Kanomata, T.: Kinetic arrest of martensitic transformation in the NiCoMnIn metamagnetic shape memory alloy. Appl. Phys. Lett. 92, 021908 (2008).Google Scholar
Xu, X., Kihara, T., Tokunaga, M., Matsuo, A., Ito, W., Umetsu, R.Y., Kindo, K., and Kainuma, R.: Magnetic field hysteresis under various sweeping rates for Ni–Co–Mn–In metamagnetic shape memory alloys. Appl. Phys. Lett. 103, 122406 (2013).Google Scholar
Lashley, J.C., Drymiotis, F.R., Safarik, D.J., and Smith, J.L.: Contribution of low-frequency modes to the specific heat of Cu–Zn–Al shape-memory alloys. Phys. Rev. B 75, 064304 (2007).Google Scholar
Fukuda, T., Choi, M.S., Kakeshita, T., and Ohba, T.: Inelastic neutron scattering of a Ti–44 at.% Ni–6 at.%. Mater. Sci. Eng., A 481–482, 235 (2008).Google Scholar
Wasilewski, R.J., Butler, S.R., and Hanlon, J.E.: On the martensitic transformation in TiNi. Met. Sci. J. 1, 104 (1967).Google Scholar
Berman, H.A., West, E.D., and Rozner, A.G.: Anomalous heat capacity of TiNi. J. Appl. Phys. 38, 4473 (1967).Google Scholar
Tang, W.: Thermodynamic study of the low-temperature phase B19′ and the martensitic transformation in near-equiatomic Ti–Ni shape memory alloys. Metall. Mater. Trans. A 28, 537 (1997).Google Scholar
Bogdanoff, P.D. and Fultz, B.: The role of phonons in the thermodynamics of the martensitic transformation in NiTi. Philos. Mag. B 81, 299 (2001).Google Scholar
Kim, J.I., Liu, Y., and Miyazaki, S.: Ageing-induced two-stage R-phase transformation in Ti–50.9 at.% Ni. Acta Mater. 52, 487 (2004).Google Scholar
Honma, T. and Takei, H.: Effect of heat treatment on the martensitic transformation in TiNi compound. Nihon Kinzoku Gakkaishi 39, 175 (1975). (in Japanese).Google Scholar
Miyazaki, S. and Otsuka, K.: Deformation and transition behavior associated with the R-phase in Ti–Ni alloys. Metall. Trans. A 17, 53 (1986).Google Scholar
Wang, X., Verlinden, B., and Humbeeck, J.V.: Effect of post-deformation annealing on the R-phase transformation temperatures in NiTi shape memory alloys. Intermetallics 62, 43 (2015).Google Scholar