Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-11T00:25:04.482Z Has data issue: false hasContentIssue false

Tracer diffusion of 60Co and 63Ni in amorphous NiZr alloy

Published online by Cambridge University Press:  31 January 2011

K. Hoshino
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana–Champaign, Illinois 61801
R. S. Averback
Affiliation:
Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois at Urbana–Champaign, Illinois 61801
H. Hahn
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
S. J. Rothman
Affiliation:
Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439
Get access

Abstract

Tracer diffusion of 60Co and 63Ni in the amorphous alloy NiZr near the equiatomic composition has been measured in the temperature range between 486 and 641 K using the ion-beam sputter-sectioning technique for serial sectioning. The temperature dependence for the diffusivities of Co and Ni in a-NiZr exhibit Arrhenius behavior; these can be expressed as follows: Dco = 3.6 × 10−7 exp [− (135 ± 14) kJ mol−1 /RT] m2/s and DNi = 1.7 × 10−7 exp [− (140 ± 9) kJ mol−1 /RT] m2/s. The values of DNi are in good agreement with those measured by the Rutherford backscattering technique. The measured diffusivities were independent of time, indicating that no relaxation took place during diffusion.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwarz, R. B. and Johnson, W. L.Phys. Rev. Lett. 51, 415 (1983).CrossRefGoogle Scholar
2Rossum, M. Van, Nicolet, M.A. and Johnson, W. L.Phys. Rev. B29, 5498 (1984).Google Scholar
3Clemens, B. M.Johnson, W. L. and Nicolet, M. A.J. Non-Cryst. Solids 61&62, 129 (1984).Google Scholar
4Cantor, B.Rapidly Quenched Metals, edited by Steeb, S. and War-limont, H. (Elsevier, Amsterdam, 1985), p. 595.CrossRefGoogle Scholar
5Chen, H. S.Kimerling, L. C.Poate, J. M. and Brown, W. L.Appl. Phys. Lett. 32, 461 (1978).Google Scholar
6Hahn, H.Averback, R. S. and Rothman, S. J.Phys. Rev. B33, 8825 (1986).Google Scholar
7Barbour, J. C.Saris, F. W.Nastasiarid, M.Mayer, J. W.Phys. Rev. B32, 1363 (1985).Google Scholar
8Gupta, D.Tu, K. N. and Asai, K. W.Phys. Rev. Lett. 35, 796 (1975).Google Scholar
9Horvath, J. and Mehrer, H.Cryst. Lattice Defects Amorphous Mater. 13, 1 (1986).Google Scholar
10Horvath, J.Freitag, K. and Mehrer, H.Cryst. Lattice Defects Amorphous Mater. 13, 15 (1986).Google Scholar
11Hahn, H.Averback, R. S.Ding, FurLoxton, C. and Baker, J.Mater. Sci. Forum 1518, 511 (1987).Google Scholar
12Mundy, J. N. and Rothman, S. J.J. Vac. Sci. Technol. A1, 74 (1983).Google Scholar
13Barbour, J. C.Phys. Rev. Lett. 55, 2872 (1985).CrossRefGoogle Scholar
14Hood, G. M.J. Phys. F8, 1677 (1978).Google Scholar
15Hood, G. M. and Schultz, R. j., Philos. Mag. 26, 329 (1972).Google Scholar
16Kidson, G. V.Philos. Mag. A44, 341 (1981).Google Scholar
17Nakajima, H.Koiwa, M.Minonishi, Y. and Ono, S.Trans. Jpn. Inst. Met. 24, 655 (1983).CrossRefGoogle Scholar
18Zener, C.J. Appl. Phys. 22, 375 (1951).CrossRefGoogle Scholar