Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T12:11:25.216Z Has data issue: false hasContentIssue false

Toward tailored functionality of titania nanotube arrays: Interpretation of the magnetic-structural correlations

Published online by Cambridge University Press:  09 May 2013

Pegah M. Hosseinpour*
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
Eugen Panaitescu
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
Don Heiman
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
Latika Menon
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
Laura H. Lewis*
Affiliation:
Department of Physics, Northeastern University, Boston, Massachusetts 02115
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

Ordered arrays of titania nanotubes (NTs) are considered as good candidates for photocatalytic applications including water splitting. Considering that the functionality of these nanostructures is influenced by their morphology, electronic and the crystallographic structure, fundamental understanding of these properties and their possible correlations can clarify the approaches toward enhanced photocatalytic efficiency. In this work, ordered arrays of titania NTs are synthesized electrochemically and are subjected to isochronal annealing treatments in various atmospheres (oxygen-rich, oxygen-deficient and reducing) to modify their morphology, crystal and electronic structure. Upon characterization of these NTs, direct correlations are found between the annealing atmosphere and the corresponding unit cell volume and the crystallite size. Furthermore, correlations between the NTs’ structure and magnetic response are observed, revealing changes in the electronic structure such as the density of states, that are in turn relevant to the functional catalytic properties of titania.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Subramanian, V., Wolf, E., and Kamat, P.V.: Semiconductor-metal composite nanostructures. To what extent do metal nanoparticles improve the photocatalytic activity of TiO2 films? J. Phys. Chem. B 105(46), 11439 (2001).CrossRefGoogle Scholar
Varghese, O.K., Paulose, M., and Grimes, C.A.: Long vertically aligned titania nanotubes on transparent conducting oxide for highly efficient solar cells. Nature Nanotechnol. 4(9), 592 (2009).CrossRefGoogle ScholarPubMed
Macak, J.M., Zlamal, M., Krysa, J., and Schmuki, P.: Self-organized TiO2 nanotube layers as highly efficient photocatalysts. Small 3(2), 300 (2007).CrossRefGoogle ScholarPubMed
Su, Z. and Zhou, W.: Formation, morphology control and applications of anodic TiO2 nanotube arrays. J. Mater. Chem. 21, 8955 (2011).CrossRefGoogle Scholar
Deng, L., Wang, S., Liu, D., Zhu, B., Huang, W., Wu, S., and Zhang, S.: Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity. Catal. Lett. 129(4), 513 (2009).CrossRefGoogle Scholar
Siegel, D.J., Schilfgaarde, M., and Hamilton, J.C.: Understanding the magnetocatalytic effect: magnetism as a driving force for surface segregation. Phys. Rev. Lett. 92(8), 086101 (2004).CrossRefGoogle ScholarPubMed
Moreau, F. and Bond, G.C.: CO oxidation activity of gold catalysts supported on various oxides and their improvement by inclusion of an iron component. Catal. Today 114(4), 362 (2006).CrossRefGoogle Scholar
Zhang, H. and Banfield, J.F.: Kinetics of crystallization and crystal growth of nanocrystalline anatase in nanometer-sized amorphous titania. Chem. Mater. 14(10), 4145 (2002).CrossRefGoogle Scholar
Lai, Y., Sun, L., Chen, Y., Zhuang, H., Lin, C., and Chin, J.W.: Effects of the structure of TiO2 nanotube array on Ti substrate on its photocatalytic activity. J. Electrochem. Soc. 153(7), D123 (2006).CrossRefGoogle Scholar
Halverson, A.F., Zhu, K., Erslev, P.T., Kim, J.Y., Neale, N.R., and Frank, A.J.: Perturbation of the electron transport mechanism by proton intercalation in nanoporous TiO2 films. Nano Lett. 12(4), 2112 (2012).CrossRefGoogle ScholarPubMed
Varghese, O.K., Paulose, M., Shankar, K., Mor, G., and Grimes, C.A.: Water-photolysis properties of micron-length highly-ordered titania nanotube-arrays. J. Nanosci. Nanotechnol. 5(7), 1158 (2005).CrossRefGoogle ScholarPubMed
Novak, G.A. and Colville, A.A.: A practical interactive least-squares cell-parameter program using an electronic spreadsheet and a personal computer. Am. Mineral. 74(4), 488 (1989).Google Scholar
Lewis, L.H. and Bussmann, K.M.: A sample holder design and calibration technique for the quantum design magnetic properties measurement system superconducting quantum interference device magnetometer. Rev. Sci. Instrum. 67(10), 3537 (1996).CrossRefGoogle Scholar
Kang, W. and Hybertsen, M.S.: Quasiparticle and optical properties of rutile and anatase TiO2. Phys. Rev. B 82(8), 085203 (2010).CrossRefGoogle Scholar
Rhodes, P. and Wohlfarth, E.P.: The effective Curie-Weiss constant of ferromagnetic metals and alloys. Proc. R. Soc. London, Ser. A 273(1353), 247 (1963).Google Scholar
Hosseinpour, P.M., Panaitescu, E., Lim, J., Morris, J., Lewis, L.H., and Menon, L.: Morphology and structure of heat-treated titania nanotubes. Nanomater. Energy 2(1), 35 (2013).CrossRefGoogle Scholar
Senftle, F.E., Pankey, T., and Grant, F.A.: Magnetic susceptibility of tetragonal titanium dioxide. Phys. Rev. 120(3), 820 (1960).CrossRefGoogle Scholar
Goodenough, J.B.: Magnetism and The Chemical Bond (Interscience Publishers, New York, 1963), pp. 1317.Google Scholar
Kittel, C.: Introduction to Solid State Physics, 3rd ed. (John Wiley & Sons, Inc., New York, 1968), pp. 432435.Google Scholar
Ashcroft, N.W. and Mermin, N.D.: Solid State Physics (Brooks/Cole, Cengage Learning, California, 1976), pp. 661664.Google Scholar
Lewis, L.H., Baumberger, E., and Gambino, R.J.: Magnetic ordering in Pd/Mn oxide nanocomposites. J. Appl. Phys. 99(8), 08P901 (2006).CrossRefGoogle Scholar
Park, J-Y., Lee, C., Jung, K-W., and Jung, D.: Structure related photocatalytic properties of TiO2. Bull. Korean Chem. Soc. 30(2), 402 (2009).Google Scholar
Stewart, D.A. and Léonard, F.: Photocurrents in nanotube junctions. Phys. Rev. Lett. 93(10), 107401 (2004).CrossRefGoogle ScholarPubMed
Yang, K., Dai, Y., Huang, B., and Feng, Y.P.: Density-functional characterization of antiferromagnetism in oxygen-deficient anatase and rutile TiO2. Phys. Rev. B 81(3), 033202 (2010).CrossRefGoogle Scholar
Yoon, S.D., Chen, Y., Yang, A., Goodrich, T.L., Zuo, X., Arena, D.A., Ziemer, K., Vittoria, C., and Harris, V.G.: Oxygen-defect-induced magnetism to 880 K in semiconducting anatase TiO2-δ films. J. Phys. Condens. Matter 18(27), L355 (2006).CrossRefGoogle Scholar
Lide, D.R.: Crc Handbook of Physics and Chemistry, 90th ed. (CRC Press, Florida, 2010), pp. 4147.Google Scholar
Neff, H., Henkel, S., Hartmannsgruber, E., Steinbeiss, E., Michalke, W., Steenbeck, K., and Schmidt, H.G.: Structural, optical, and electronic properties of magnetron-sputtered platinum oxide films. J. Appl. Phys. 79(10), 7672 (1996).CrossRefGoogle Scholar
Richter, C., Jaye, C., Panaitescu, E., Fischer, D.A., Lewis, L.H., Willey, R.J., and Menon, L.: Effect of potassium adsorption on the photochemical properties of titania nanotube arrays. J. Mater. Chem. 19, 2963 (2009).CrossRefGoogle Scholar
Kröger, F.A. and Vink, H.J.: Solid State Physics, Vol. 3 (Academic Press, New York, 1956), pp. 273301.Google Scholar
Guillemot, F., Porté, M.C., Labrugère, C., and Baquey, C.: Ti4+ to Ti3+ conversion of TiO2 uppermost layer by low-temperature vacuum annealing: Interest of titanium biomedical applications. J. Colloid Interface Sci. 255(1), 75 (2002).CrossRefGoogle ScholarPubMed
Keys, L.K. and Mulay, L.N.: Magnetic susceptibility measurements of rutile and the magnéli phases of the Ti-O system. Phys. Rev. 154(2), 453 (1967).CrossRefGoogle Scholar
Ghicov, A., Tsuchiya, H., Macak, J.M., and Schmuki, P.: Annealing effects on the photoresponse of TiO2 nanotubes. Phys. Status Solidi A 203(4), R28 (2006).CrossRefGoogle Scholar
Xiao, P., Liu, D., Garcia, B.B., and Sepehri, S.: Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. Sens. Actuators, B 134(2), 367 (2008).CrossRefGoogle Scholar
Xiong, L.B., Li, J-L., Yang, B., and Yu, Y.: Ti3+ in the surface of titanium dioxide: generation, properties and photocatalytic application. J. Nanomater. 2012, 831524 (2012).CrossRefGoogle Scholar
Yoon, S.D., Harris, V.G., Vittoria, C., and Widom, A.: Electronic transport in oxygen deficient ferromagnetic semiconducting TiO2-δ. J. Phys. Condens. Matter 19(32), 326202 (2007).CrossRefGoogle Scholar
Lide, D.R., Crc Handbook of Physics and Chemistry, 90th ed. (CRC Press, Florida, 2010), pp. 1212.Google Scholar
Nah, Y-C., Paramasivam, I., and Schmuki, P.: Doped TiO2 and TiO2 nanotubes: Synthesis and applications. Chem. Phys. Chem. 11(13), 2698 (2010).CrossRefGoogle ScholarPubMed
Zhang, F., Chan, S-W., Spanier, J.E., Apak, E., Jin, Q., Robinson, R.D., and Herman, I.P.: Cerium oxide nanoparticles: Size-selective formation and structure analysis. Appl. Phys. Lett. 80, 127 (2002).CrossRefGoogle Scholar
Choi, M-B., Jeon, S-Y., Yang, H-S., Park, J-Y., and Song, S-J.: Determination of oxygen chemical diffusivity from chemical expansion relaxation for BaCo0.7Fe0.22Nb0.08O3-δ. J. Electrochem. Soc. 158(2), B189 (2011).CrossRefGoogle Scholar
Hailstone, R.K., DiFrancesco, A.G., Leong, J.G., Allston, T.D., and Reed, K.J.: A study of lattice expansion in CeO2 nanoparticles by transmission electron microscopy. J. Phys. Chem. C 113(34), 15155 (2009).CrossRefGoogle Scholar
Inagaki, M., Nonaka, R., Tryba, B., and Morawski, A.W.: Dependenece of photocatalytic activity of anatase powders on their crystallinity. Chemosphere 64(3), 437 (2006).CrossRefGoogle ScholarPubMed
Liu, H., Ma, H.T., Li, X.Z., Li, W.Z., Wu, M., and Bao, X.H.: The enhancement of TiO2 photocatalytic activity by hydrogen thermal treatment. Chemosphere 50(1), 39 (2003).CrossRefGoogle ScholarPubMed
Fan, L., Dongmei, J., Yan, L., and Xurming, M.: Magnetism of Fe-doped TiO2 milled in different milling atmospheres. Physica B 403(13), 2193 (2008).Google Scholar
Coey, J.M.D., Venkatesan, M., and Fitzgerald, C.B.: Donor impurity band exchange in dilute ferromagnetic oxides. Nat. Mater. 4, 173 (2005).CrossRefGoogle ScholarPubMed
Heiman, D., Wolff, P.A., and Warnock, J.: Spin-flip Raman scattering, bound magnetic polaron, and fluctuations in (Cd, Mn)Se. Phys. Rev. B 27(8), 4848 (1983).CrossRefGoogle Scholar
Zhou, S., Čižmár, E., Potzger, K., Krause, M., Talut, G., Helm, M., Fassbender, J., Zvyagin, S.A., Wosnitza, J., and Schmidt, H.: Origin of magnetic moments in defective TiO2 single crystals. Phys. Rev. B 79, 113201 (2009).CrossRefGoogle Scholar
Venkatesan, M., Fitzgerald, C.B., and Coey, J.M.D.: Thin films: Unexpected magnetism in a dielectric oxide. Nature 430, 630 (2004).CrossRefGoogle Scholar
Shah, L.R., Ali, B., Zhu, H., Wang, W.G., Song, Y.Q., Zhang, H.W., Shah, S.I., and Xiao, J.Q.: Detailed study on the role of oxygen vacancies in structural, magnetic and transport behavior of magnetic insulator: Co-CeO2. J. Phys. Condens. Matter 21(48), 486004 (2009).CrossRefGoogle Scholar