Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-03T02:22:58.615Z Has data issue: false hasContentIssue false

Tough and stiff composites with simple building blocks

Published online by Cambridge University Press:  10 May 2013

Leon S. Dimas
Affiliation:
Department of Civil and Environmental Engineering, Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Markus J. Buehler*
Affiliation:
Department of Civil and Environmental Engineering, Laboratory for Atomistic and Molecular Mechanics (LAMM), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

From bone to dentin to nacre, biomaterials are structurally advanced composites with superior toughness and significant stiffness, based on simple building blocks. Here, using a series of molecular mechanics models with bioinspired topologies, we propose design mechanisms rooted in the simplest mechanical interactions—perfectly brittle linear elastic—which are shown to be sufficient to achieve superior toughness at high stiffness in biological composites. In a two-phase composite system, we show that by adapting the elastic constitutive laws of the matrix phase and by tuning the interactions of the constituents we can realize materials with a large range of combinations of toughness and stiffness. Notably, this can be achieved without changing the fracture energy of the individual composite components. Through a systematic analysis and the development of a simple model, we unveil basic design principles that lead to fundamental insights into the mechanics of natural composites for applications in a range of engineering disciplines.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Espinosa, H.D., Rim, J.E., Barthelat, F., and Buehler, M.J.: Merger of structure and material in nacre and bone - perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 8 (2009).CrossRefGoogle Scholar
Meyers, M.A., Chen, P.Y., Lin, A.Y.M., and Seki, Y.: Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1 (2008).CrossRefGoogle Scholar
Barthelat, F.: Biomimetics for next generation materials. Philos. Trans. R. Soc. London, Ser. A 365, 1861 (2007).Google ScholarPubMed
Smith, B.L., Schaffer, T.E., Viani, M., Thompson, J.B., Frederick, N.A., Kindt, J., Belcher, A., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 6738 (1999).CrossRefGoogle Scholar
Fantner, G.E., Hassenkam, T., Kindt, J.H., Weaver, J.C., Birkedal, H., Pechenik, L., Cutroni, J.A., Cidade, G.A.G., Stucky, G.D., Morse, D.E., and Hansma, P.K.: Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nat. Mater. 4, 8 (2005).CrossRefGoogle ScholarPubMed
Gupta, H., Wagermaier, W., Zickler, G., Aroush, D., Funari, S., Roschger, P., Wagner, H., and Fratzl, P.: Nanoscale deformation mechanisms in bone. Nano Lett. 5, 10 (2005).CrossRefGoogle ScholarPubMed
Wang, R.Z., Suo, Z., Evans, A.G., Yao, N., and Aksay, I.A.: Deformation mechanisms in nacre. J. Mater. Res. 16, 9 (2001).CrossRefGoogle Scholar
Gupta, H.S., Seto, J., Wagermaier, W., Zaslansky, P., Boesecke, P., and Fratzl, P.: Cooperative deformation of mineral and collagen in bone at the nanoscale. Proc. Natl. Acad. Sci. USA 103, 47 (2006).CrossRefGoogle Scholar
Sen, D. and Buehler, M.J.: Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep 1, 35 (2011).CrossRefGoogle ScholarPubMed
Fratzl, P. and Weinkamer, R.: Nature's hierarchical materials. Prog. Mater. Sci. 52, 8 (2007).CrossRefGoogle Scholar
Barthelat, F., Tang, H., Zavattieri, P.D., Li, C.M., and Espinosa, H.D.: On the mechanics of mother-of-pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 2 (2007).CrossRefGoogle Scholar
Gao, H.J., Ji, B.H., Jager, I.L., Arzt, E., and Fratzl, P.: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. USA 100, 10 (2003).CrossRefGoogle ScholarPubMed
Jackson, A.P., Vincent, J.F.V., and Turner, R.M.: The mechanical design of nacre. Philos. Trans. R. Soc. London, Ser. B 234, 1277 (1988).Google Scholar
Fratzl, P., Gupta, H.S., Paschalis, E.P., and Roschger, P.: Structure and mechanical quality of the collagen-mineral nano-composite in bone. J. Mater. Chem. 14, 14 (2004).CrossRefGoogle Scholar
Bergander, A. and Salmen, L.: Cell wall properties and their effects on the mechanical properties of fibers. J. Mater. Sci. 37, 1 (2002).CrossRefGoogle Scholar
Han, L., Wang, L.F., Song, J.H., Boyce, M.C., and Ortiz, C.: Direct quantification of the mechanical anisotropy and fracture of an individual exoskeleton layer via uniaxial compression of micropillars. Nano Lett. 11, 9 (2011).CrossRefGoogle ScholarPubMed
Dunlop, J.W.C. and Fratzl, P.: Biological composites. Annu. Rev. Mater. Res. 40, 40 (2010).CrossRefGoogle Scholar
Barthelat, F., Dastjerdi, A.K., and Rabiei, R.: An improved failure criterion for biological and engineered staggered composites. J. R. Soc. Interface 10, 79 (2013).CrossRefGoogle ScholarPubMed
Ji, B.H. and Gao, H.J.: A study of fracture mechanisms in biological nano-composites via the virtual internal bond model. Mater. Sci. Eng., A 366, 1 (2004).CrossRefGoogle Scholar
Fratzl, P., Gupta, H.S., Fischer, F.D., and Kolednik, O.: Hindered crack propagation in materials with periodically varying Young's modulus - lessons from biological materials. Adv. Mater. 19, 18 (2007).CrossRefGoogle Scholar
Okumura, K. and de Gennes, P.G.: Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures. Eur. Phys. J. E 4, 1 (2001).CrossRefGoogle Scholar
Beale, P.D. and Srolovitz, D.J.: Elastic fracture in random materials. Phys. Rev. B 37, 10 (1988).CrossRefGoogle ScholarPubMed
Curtin, W.A. and Scher, H.: Brittle-fracture in disordered materials - a spring network model. J. Mater. Res. 5, 3 (1990).CrossRefGoogle Scholar
Sahimi, M. and Goddard, J.D.: Elastic percolation models for cohesive mechanical failure in heterogeneous systems. Phys. Rev. B 33, 11 (1986).CrossRefGoogle ScholarPubMed
Curtin, W.A. and Scher, H.: Mechanics modeling using a spring network. J. Mater. Res. 5, 3 (1990).CrossRefGoogle Scholar
Tai, K., Dao, M., Suresh, S., Palazoglu, A., and Ortiz, C.: Nanoscale heterogeneity promotes energy dissipation in bone. Nat. Mater. 6, 6 (2007).CrossRefGoogle ScholarPubMed
Younis, S., Kauffmann, Y., Bloch, L., and Zolotoyabko, E.: Inhomogeneity of nacre lamellae on the nanometer length scale. Cryst. Growth Des. 12(9), 45744579 (2012).CrossRefGoogle Scholar
Gupta, H.S., Stachewicz, U., Wagermaier, W., Roschger, P., Wagner, H.D., and Fratzl, P.: Mechanical modulation at the lamellar level in osteonal bone. J. Mater. Res. 21, 8 (2006).CrossRefGoogle Scholar
Landis, W.J.: The strength of a calcified tissue depends in part on the molecular-structure and organization of its constituent mineral crystals in their organic matrix. Bone 16, 5 (1995).CrossRefGoogle ScholarPubMed
Menig, R., Meyers, M.H., Meyers, M.A., and Vecchio, K.S.: Quasi-static and dynamic mechanical response of Haliotis rufescens (abalone) shells. Acta Mater. 48, 9 (2000).CrossRefGoogle Scholar
Buehler, M.J.: Atomistic Modeling of Materials Failure (Springer, New York, 2008).CrossRefGoogle Scholar
Wang, R.Z. and Gupta, H.S.: Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41 (2011).CrossRefGoogle Scholar
Argatov, I.I.: Averaging of a finely laminated elastic medium with roughness or adhesion on the contact surfaces of the layers. J. Appl. Math. Mech. 73, 6 (2009).CrossRefGoogle Scholar
Tsai, D.H.: Virial theorem and stress calculation in molecular-dynamics. J. Chem. Phys. 70, 3 (1979).CrossRefGoogle Scholar
Zimmerman, J.A., Bammann, D.J., and Gao, H.J.: Deformation gradients for continuum mechanical analysis of atomistic simulations. Int. J. Solids Struct. 46, 2 (2009).CrossRefGoogle Scholar
Song, F., Soh, A.K., and Bai, Y.L.: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 20 (2003).CrossRefGoogle ScholarPubMed
Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 5751 (2005).CrossRefGoogle ScholarPubMed
Rice, J.R.: A path independent integral and approximate analysis of strain concentration by Notches and Cracks. J. Appl. Mech. 35, 2 (1968).CrossRefGoogle Scholar
Dimas, L.S. and Buehler, M.J.: Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials. Bioinspiration Biomimetics 7, 3 (2012).CrossRefGoogle ScholarPubMed