Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-25T00:57:58.589Z Has data issue: false hasContentIssue false

A topological approach to design Ni-based bulk metallic glasses with high corrosion resistance

Published online by Cambridge University Press:  03 March 2011

A.P. Wang
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
J.Q. Wang*
Affiliation:
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The structural model for metallic glasses and the topological instability criterion for multicomponent alloy systems have been combined to formulate a design protocol for bulk metallic glasses (BMGs). New Ni-Nb-Zr bulk metallic glasses with high corrosion resistance have been discovered. The experimental results in literature also support the use of this approach as a practically efficient method to select bulk metallic glass-forming compositions.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Peker, A. and Johnson, W.L.: A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5. Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
2Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279 (2000).CrossRefGoogle Scholar
3Ponnambalam, V., Poon, S.J., and Shiflet, G.J.: Fe-based bulk metallic glasses with diameter thickness larger than one centimeter. J. Mater. Res. 19, 1320 (2004).CrossRefGoogle Scholar
4Lu, Z.P., Liu, C.T., Thompson, J.R., and Porter, W.D.: Structural amorphous steels. Phys. Rev. Lett. 92, 245503 (2004).CrossRefGoogle ScholarPubMed
5Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovering inch-diameter metallic glasses in three-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
6Wang, D., Li, Y., Sun, B.B., Sui, M.L., Lu, K., and Ma, E.: Bulk metallic glass formation in the binary Cu-Zr system. Appl. Phys. Lett. 84, 4029 (2004).CrossRefGoogle Scholar
7Zhang, T. and Inoue, A.: New bulk glassy Ni-based alloys with high strength of 3000 MPa. Mater. Trans. 43, 708 (2002).CrossRefGoogle Scholar
8Lee, J.K., Bae, D.H., Yi, S., Kim, W.T., and Kim, D.H.: Effects of Sn addition on the glass forming ability and crystallization behavior in Ni-Zr-Ti-Si alloys. J. Non-Cryst. Solids 333, 212 (2004).CrossRefGoogle Scholar
9Yim, H.C., Xu, D.H., and Johnson, W.L.: Ni-based bulk metallic glass formation in the Ni-Nb-Sn and Ni-Nb-Sn-X (X=B,Fe,Cu) alloy systems. Appl. Phys. Lett. 82, 1030 (2003).Google Scholar
10Xu, D.H., Duan, G., Johnson, W.L., and Garland, C.: Formation and properties of new Ni-based amorphous alloys with critical casting thickness up to 5 mm. Acta Mater. 52, 3493 (2004).Google Scholar
11Wang, A.P., Zhang, T., and Wang, J.Q.: Ni-based fully amorphous metallic coating with high corrosion resistance. Philos. Mag. Lett. 86, 5 (2006).Google Scholar
12Turnbull, D.: Under what conditions can a glass be formed. Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
13Lu, Z.P. and Liu, C.T.: A new glass-forming ability criterion for bulk metallic glasses. Acta Mater. 50, 3501 (2002).CrossRefGoogle Scholar
14Senkov, O.N. and Miracle, D.B.: Effect of the atomic size distribution on glass forming ability of amorphous metallic alloys. Mater. Res. Bull. 36, 2183 (2001).Google Scholar
15Miracle, D.B., Sanders, W.S., and Senkov, O.N.: The influence of efficient atomic packing on the constitution of metallic glasses. Philos. Mag. 83, 2409 (2003).Google Scholar
16Miracle, D.B.: A structural model for metallic glasses. Nat. Mater. 3, 697 (2004).Google Scholar
17Egami, T.: Universal criterion for metallic glass formation. Mater. Sci. Eng., A 226–228, 261 (1997).CrossRefGoogle Scholar
18Miracle, D.B. and Senkov, O.N.: A geometric model for atomic configurations in amorphous Al alloys. J. Non-Cryst. Solids 319, 174 (2003).Google Scholar
19Sheng, H.W., Luo, W.K., Alamgir, F.M., Bai, J., and Ma, E.: Atomic packing and short-to-medium-range order in metallic glasses. Nature 439, 419 (2006).Google Scholar
20Egami, T. and Waseda, Y.: Atomic size effect on the formability of metallic glasses. J. Non-Cryst. Solids 64, 113 (1984).Google Scholar
21Okamoto, P.R., Lam, N.Q., and Rehn, L.E.: Physics of crystal-to-glass transformations, in Solid State Physics Vol. 52, edited by Enrenreich, H., Spaepen, F. (Academic Press, San Diego, CA, 1999) p. 1.Google Scholar
22Egami, T.: The atomic structure of aluminum based metallic glasses and universal criterion for glass formation. J. Non-Cryst. Solids 205–207, 575 (1996).CrossRefGoogle Scholar
23Lisboa, R.D.S., Bolfarini, C., Botta, W.J., and Kiminami, F.C.S.: Topological instability as a criterion for design and selection of aluminum-based glass-former alloys. Appl. Phys. Lett 86, 211904 (2005).CrossRefGoogle Scholar
24Zhang, W. and Inoue, A.: Effects of Ti on the thermal stability and glass-forming ability of Ni-Nb glassy alloy. Mater. Trans. 43, 2342 (2002).CrossRefGoogle Scholar
25Inoue, A., Zhang, W., and Zhang, T.: Thermal stability and mechanical strength of bulk glassy Ni-Nb-Ti-Zr alloys. Mater. Trans. 43, 1952 (2002).CrossRefGoogle Scholar
26Pang, S.J., Zhang, T., Asami, K., and Inoue, A.: Formation of bulk glassy Ni-(Co-)Nb-Ti-Zr alloys with high corrosion resistance. Mater. Trans. 43, 1771 (2002).CrossRefGoogle Scholar
27Guo, F.Q., Poon, S.J., and Shiflet, G.J.: Enhanced bulk metallic glass formability by combining chemical compatibility and atomic size effects. J. Appl. Phys. 97, 013512 (2004).CrossRefGoogle Scholar