Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T11:23:58.907Z Has data issue: false hasContentIssue false

TiO2-polyheptazine hybrid photoanodes: Effect of cocatalysts and external bias on visible light-driven water splitting

Published online by Cambridge University Press:  28 September 2012

Michal Bledowski
Affiliation:
Department of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Lidong Wang
Affiliation:
Department of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Ayyappan Ramakrishnan
Affiliation:
Department of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
Radim Beranek*
Affiliation:
Department of Inorganic Chemistry II, Faculty of Chemistry and Biochemistry, Ruhr University Bochum, 44780 Bochum, Germany
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Photoanodes based on TiO2-polyheptazine (TiO2-PH) hybrids are, due to the energetics of photogenerated charges, very promising for solar water splitting in terms of possibly reduced need for external electric bias. Visible (λ > 420 nm) light-driven photooxidation of water at TiO2-PH electrodes loaded with two different metal oxide cocatalysts was investigated. As compared with TiO2-PH photoanodes loaded with colloidal [iridium (IV) oxide] IrO2 deposited by colloidal deposition, photoelectrodes modified with CoOx oxygen-evolving cocatalyst (Co-Pi) deposited by photoassisted deposition precipitation method showed both higher photocurrents and more efficient oxygen evolution under prolonged irradiation. The minimum external electric bias needed to observe complete photooxidation of water to dioxygen at TiO2-PH photoanodes modified with Co-Pi was estimated to be ∼0.6 V at pH 7. The key factor limiting the photoconversion efficiency at low bias potentials is the fast primary recombination of photogenerated charges.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lewis, N.S. and Nocera, D.G.: Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. U.S.A. 103, 15729 (2006).CrossRefGoogle ScholarPubMed
Khaselev, O. and Turner, J.A.: A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting. Science 280, 425 (1998).Google Scholar
Heller, A.: Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154 (1981).Google Scholar
Lewerenz, H.J., Heine, C., Skorupska, K., Szabo, N., Hannappel, T., Vo-Dinh, T., Campbell, S.A., Klemm, H.W., and Munoz, A.G.: Photoelectrocatalysis: Principles, nanoemitter applications and routes to bioinspired systems. Energy Environ. Sci. 3, 748 (2010).CrossRefGoogle Scholar
Licht, S., Wang, B., Mukerji, S., Soga, T., Umeno, M., and Tributsch, H.: Over 18% solar energy conversion to generation of hydrogen fuel; theory and experiment for efficient solar water splitting. Int. J. Hydrogen Energy 26, 653 (2001).CrossRefGoogle Scholar
Dau, H., Limberg, C., Reier, T., Risch, M., Roggan, S., and Strasser, P.: The mechanism of water oxidation: From electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724 (2010).Google Scholar
Rossmeisl, J., Qu, Z.W., Zhu, H., Kroes, G.J., and Norskov, J.K.: Electrolysis of water on oxide surfaces. J. Electroanal. Chem. 607, 83 (2007).Google Scholar
Valdés, A., Qu, Z.W., Kroes, G.J., Rossmeisl, J., and Nørskov, J.K.: Oxidation and photooxidation of water on TiO2 surface. J. Phys. Chem. C 112, 9872 (2008).Google Scholar
Wang, H., Deutsch, T., and Turner, J.A.: Direct water splitting under visible light with nanostructured hematite and WO3 photoanodes and a GaInP2 photocathode. J. Electrochem. Soc. 155, F91 (2008).Google Scholar
van de Krol, R., Liang, Y., and Schoonman, J.: Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 18, 2311 (2008).Google Scholar
Alexander, B.D., Kulesza, P.J., Rutkowska, I., Solarska, R., and Augustynski, J.: Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 18, 2298 (2008).Google Scholar
Youngblood, W.J., Lee, S-H.A., Kobayashi, Y., Hernandez-Pagan, E.A., Hoertz, P.G., Moore, T.A., Moore, A.L., Gust, D., and Mallouk, T.E.: Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical Cell. J. Am. Chem. Soc. 131, 926 (2009).Google Scholar
Tributsch, H.: Nanocomposite solar cells: The requirement and challenge of kinetic charge separation. J. Solid State Electrochem. 13, 1127 (2009).CrossRefGoogle Scholar
Dau, H. and Zaharieva, I.: Principles, efficiency, and blueprint character of solar-energy conversion in photosynthetic water oxidation. Acc. Chem. Res. 42, 1861 (2009).Google Scholar
Rossmeisl, J., Dimitrievski, K., Siegbahn, P., and Norskov, J.K.: Comparing electrochemical and biological water splitting. J. Phys. Chem. C 111, 18821 (2007).CrossRefGoogle Scholar
Youngblood, W.J., Lee, S-H.A., Maeda, K., and Mallouk, T.E.: Visible light water splitting using dye-sensitized oxide semiconductors. Acc. Chem. Res. 42, 1966 (2009).Google Scholar
Bledowski, M., Wang, L., Ramakrishnan, A., Khavryuchenko, O.V., Khavryuchenko, V.D., Ricci, P.C., Strunk, J., Cremer, T., Kolbeck, C., and Beranek, R.: Visible-light photocurrent response of TiO2-polyheptazine hybrids: Evidence for interfacial charge-transfer absorption. Phys. Chem. Chem. Phys. 13, 21511 (2011).CrossRefGoogle ScholarPubMed
Wang, L., Bledowski, M., Ramakrishnan, A., König, D., Ludwig, A., and Beranek, R.: Dynamics of photogenerated holes in TiO2-polyheptazine hybrid photoanodes for visible light-driven water splitting. J. Electrochem. Soc. 159, H616 (2012).Google Scholar
Bledowski, M., Wang, L., Ramakrishnan, A., Betard, A., Khavryuchenko, O.V., and Beranek, R.: Visible-light photooxidation of water to oxygen at hybrid TiO2–polyheptazine photoanodes with photodeposited Co-Pi (CoOx) cocatalyst. ChemPhysChem 13, 3018 (2012).Google Scholar
Wang, X., Maeda, K., Thomas, A., Takanabe, K., Xin, G., Carlsson, J.M., Domen, K., and Antonietti, M.: A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76 (2009).Google Scholar
Wang, Y., Wang, X., and Antonietti, M.: Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem. Int. Ed. 51, 68 (2012).CrossRefGoogle ScholarPubMed
Kanan, M.W. and Nocera, D.G.: In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072 (2008).Google Scholar
Zhong, D.K., Cornuz, M., Sivula, K., Gratzel, M., and Gamelin, D.R.: Photoassisted electrodeposition of cobalt phosphate (Co-Pi) catalyst on hematite photoanodes for solar water oxidation. Energy Environ. Sci. 4, 1759 (2011).Google Scholar
Maeda, K., Higashi, M., Siritanaratkul, B., Abe, R., and Domen, K.: SrNbO2N as a water-splitting photoanode with a wide visible-light absorption band. J. Am. Chem. Soc. 133, 12334 (2011).Google Scholar
Hodes, G., Howell, I.D.J., and Peter, L.M.: Nanocrystalline photoelectrochemical cells. A new concept in photovoltaic cells. J. Electrochem. Soc. 139, 3136 (1992).Google Scholar
Wahl, A., Ulmann, M., Carroy, A., and Augustynski, J.: Highly selective photooxidation reactions at nanocrystalline TiO2 film electrodes. J. Chem. Soc., Chem. Commun. 2277 (1994).CrossRefGoogle Scholar
Peter, L.M.: Dynamic aspects of semiconductor photoelectrochemistry. Chem. Rev. 90, 753 (1990).CrossRefGoogle Scholar
Tilley, S.D., Cornuz, M., Sivula, K., and Grätzel, M.: Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysis. Angew. Chem. Int. Ed. 49, 6405 (2010).Google Scholar
Kay, A., Cesar, I., and Graetzel, M.: New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 128, 15714 (2006).CrossRefGoogle ScholarPubMed
Gratzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).Google Scholar
Beranek, R.: (Photo)electrochemical methods for the determination of the band edge positions of TiO2-based nanomaterials. Adv. Phys. Chem. (2011) doi:10.1155/2011/786759.CrossRefGoogle Scholar