Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-05T13:28:40.030Z Has data issue: false hasContentIssue false

TiN prepared by plasma source ion implantation of nitrogen into Ti as a diffusion barrier for Si/Cu metallization

Published online by Cambridge University Press:  31 January 2011

W. Wang
Affiliation:
Engineering Research Center for Plasma-aided Manufacturing, University of Wisconsin-Madison, 1410 Engineering Drive, Madison, Wisconsin 53706
J. H. Booske
Affiliation:
Engineering Research Center for Plasma-aided Manufacturing, University of Wisconsin-Madison, 1410 Engineering Drive, Madison, Wisconsin 53706
H. L. Liu
Affiliation:
Engineering Research Center for Plasma-aided Manufacturing, University of Wisconsin-Madison, 1410 Engineering Drive, Madison, Wisconsin 53706
S. S. Gearhart
Affiliation:
Engineering Research Center for Plasma-aided Manufacturing, University of Wisconsin-Madison, 1410 Engineering Drive, Madison, Wisconsin 53706
J. L. Shohet
Affiliation:
Engineering Research Center for Plasma-aided Manufacturing, University of Wisconsin-Madison, 1410 Engineering Drive, Madison, Wisconsin 53706
S. Bedell
Affiliation:
Department of Physics, State University of New York-Albany, Albany, New York 12222
W. Lanford
Affiliation:
Department of Physics, State University of New York-Albany, Albany, New York 12222
Get access

Abstract

A method of forming TiN films for Si/Cu metallization by using plasma source ion implantation (PSII) of nitrogen into Ti is described. The PSII process utilizes a dose of 1 × 1017 ions/cm2 and peak voltages of –10, –15, and –20 kV. The properties of such TiN films as diffusion barriers between Cu and Si were investigated by annealing Cu(2000 A)/TiN/Ti/Si films in vacuum from 500 °C to 700 °C, and by analyzing with four-point probe sheet resistance measurements, Rutherford backscattering spectrometry (RBS), and Auger electron spectroscopy (AES). The TiN films made at peak voltages of –15 and –20 kV were stable barriers against Cu diffusion after annealing at temperatures higher than 600 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Murarka, S. P., Gutmann, R. J., Kaloyeros, A. E., and Lanford, W. A., Thin Solid Films 236, 257 (1994).CrossRefGoogle Scholar
2.Li, J., Shacham-Diamond, Y., and Mayer, J. W., Mater. Sci. Rep. 9, 1 (1992).CrossRefGoogle Scholar
3.Li, J. and Mayer, J. W., MRS Bull. 18, 52 (1991).CrossRefGoogle Scholar
4.Shacham-Diamand, Y., Dedhia, A., Hoffstetter, D., and Oldham, W. G., Proc. 8th VLSI Multilevel Interconnection Conference 109 (1991).Google Scholar
5.Holloway, K., Fryer, P. M., Cabral, C., Jr., Harper, J. M. E., Bailey, P. J., and Kelleher, K. H., J. Appl. Phys. 71, 5433 (1992).CrossRefGoogle Scholar
6.Mattoso, N., Achete, C., and Freire, F. L., Jr., Thin Solid Films 220, 184 (1992).CrossRefGoogle Scholar
7.Wang, S. O., Raaijmakers, I., Burrow, B. J., Suthar, S., Redkar, S., and Kim, K. B., J. Appl. Phys. 68 (10), 5176 (1990).CrossRefGoogle Scholar
8.Wang, S. Q., MRS Bull. (August), 30 (1994).Google Scholar
9.Qian, X. Y., Cheung, N. W., Liberman, M. A., Felch, S. B., Brennan, R., and Current, M. I., Appl. Phys. Lett. 59 (3), 348 (1991).CrossRefGoogle Scholar
10.Qian, X. Y., Cheung, N. W., Liberman, M. A., Brennan, R., Current, M. I., and Jha, N., Nucl. Instrum. Methods B55, 898 (1991).CrossRefGoogle Scholar
11.Liu, J., Kumar, S. S., Hu, C., Cheung, N. W., Gronsky, R., Min, J., and Chu, P., Appl. Phys. Lett. 67 (16), 2361 (1995).CrossRefGoogle Scholar
12.Conrad, J. R., Radtke, J. L., Dodd, R. A., Worzak, F. J., and Tran, N. C., J. Appl. Phys. 62 (11), 4591 (1987).CrossRefGoogle Scholar
13.Murarka, S. P., Metallization Theory and Practice fpr VLSI and ULSI (Butterworth-Heinemann, MA, 1993), p. 47.Google Scholar