Published online by Cambridge University Press: 31 January 2011
Nanosecond time-resolved reflectivity and ellipsometry experiments have been performed on (100) Si wafers encapsulated by 5.5–76.2 nm thick thermal oxides, using pulsed KrF (248 nm) laser energy densities sufficient to melt the Si beneath the oxide. Post-irradiation nulling ellipsometry, optical microphotography, and surface profiling measurements were carried out. It was found that the threshold energy density required to melt the Si varies with oxide thickness; this is explained primarily by the reflective properties of the oxide overlayer. The time-resolved reflectivity and ellipsometry measurements show that rippling of the SiO2 layer occurs on the 20–40 ns timescale and results in a decrease in specular reflectivity of the rippled silicon surface beneath. Optical model calculations suggest that pulsed laser annealing through a thick oxide layer results in a damaged near-surface silicon layer (∼ 30 nm thick); this layer contains defects that are probably responsible for the degraded performance of devices.