Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T22:28:02.789Z Has data issue: false hasContentIssue false

Thick beryllium coatings by ion-assisted magnetron sputtering

Published online by Cambridge University Press:  24 November 2011

Hongwei Xu*
Affiliation:
General Atomics, San Diego, California 92186-5608
Craig Alford
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Eric Chason
Affiliation:
Department of Engineering, Brown University, Providence, Rhode Island 02912
Andrew J. Detor
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Tim Fuller
Affiliation:
General Atomics, San Diego, California 92186-5608
Alex V. Hamza
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Jeff Hayes
Affiliation:
General Atomics, San Diego, California 92186-5608
Kari A. Moreno
Affiliation:
General Atomics, San Diego, California 92186-5608
Abbas Nikroo
Affiliation:
General Atomics, San Diego, California 92186-5608
Tony van Buuren
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Yinmin Wang
Affiliation:
Materials Science and Technology Division, Lawrence Livermore National Laboratory, Livermore, California 94550
Jun-jim Wu
Affiliation:
General Atomics, San Diego, California 92186-5608
Heather Wilkens
Affiliation:
General Atomics, San Diego, California 92186-5608
Kelly P. Youngblood
Affiliation:
General Atomics, San Diego, California 92186-5608
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thick (>150 μm) beryllium coatings are studied as an ablator material of interest for fusion fuel capsules for the National Ignition Facility. DC magnetron sputtering is used because of the relative controllability of the processing temperature and energy of the deposits. However, coatings produced by DC magnetron sputtering leak the fuel gas D2. By using ion-assisted DC magnetron, sputtered coatings can be made that are leak-tight. Transmission electron microscopy (TEM) studies revealed microstructural changes that lead to leak-tight coating. Ultrasmall angle x-ray spectroscopy is used to characterize the void distribution and volume along the spherical surface along with a combination of focused ion beam, scanning electron microscope, and TEM. An in situ multibeam optical stress sensor was used to measure the stress behavior of thick beryllium coatings on flat substrates as the material was being deposited.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haan, S.W., Callahan, D.A., Edwards, M.J., Hammel, B.A., Ho, D.D., Jones, O.S., Lindl, J.D., Macgowan, B.J., Marinak, M.M., Munro, D.H., Pollaine, S.M., Salmonson, J.D., Spears, B.K., and Suter, L.J.: Rev3 update of requirements for NIF ignition targets. Fusion Sci. Technol. 55, 227 (2009).CrossRefGoogle Scholar
2.Mceachern, R., Alford, C., Cook, R., Makowcki, D., and Wallace, R.: Sputter-deposited Be ablators for NIF target capsules. Fusion Technol. 31, 435 (1997).CrossRefGoogle Scholar
3.Xu, H.W., Nikroo, A., Wall, J.R., Doerner, R., Baldwin, M., and Yu, J.H.: Be coating on spherical surface for NIF target development. Fusion Sci. Technol. 49, 778 (2006).CrossRefGoogle Scholar
4.Xu, H.W., Alford, C.S., Cooley, J.C., Dixon, L.A., Hackenberg, R.E., Letts, S.A., Moreno, K.A., Nikroo, A., Wall, J.R., and Youngblood, K.P.: Beryllium capsule coating development for NIF targets. Fusion Sci. Technol. 51, 547 (2007).CrossRefGoogle Scholar
5.Nikroo, A., Xu, H.W., Moreno, K.A., Youngblood, K.P., Cooley, J., Alford, C.S., Letts, S.A., and Cook, R.C.: Investigation of deuterium permeability of sputtered beryllium and graded copper-doped beryllium shells. Fusion Sci. Technol. 51, 553 (2007).CrossRefGoogle Scholar
6.Robbie, K. and Brett, M.J.: Sculptured thin films and glancing angle deposition: Growth mechanisms and applications. J. Vac. Sci. Technol. A 15(3), 1460 (1997).CrossRefGoogle Scholar
7.Dalla Torre, J., Gilmer, G.H., Windt, D.L., Kalyanaraman, R., Baumann, F.H., O’Sullivan, P.L., Sapjeta, J., Diaz de la Rubia, T., and Djafari Rouhani, M.: Microstructure of thin tantalum films sputtered onto inclined substrates: Experiments and atomistic simulations. J. Appl. Phys. 94, 264 (2003).CrossRefGoogle Scholar
8.Thornton, J.A.: High rate thick film growth. Annu. Rev. Mater. Sci. 7, 239 (1977).CrossRefGoogle Scholar
9.Helmersson, U., Lattemann, M., Bohlmark, J., Ehiasarian, A.P., and Gudmudsson, J.T.: Ionized physical vapor deposition (IPVD): A review of technology and applications. Thin Solid Films 513, 1 (2006).CrossRefGoogle Scholar
10.Tao, K., Mao, D., and Hopwood, J.: Ionized physical vapor deposition of titanium nitride: A global plasma model. J. Appl. Phys. 91, 4040 (2002).CrossRefGoogle Scholar
11.Hopwood, J.: Ionized physical vapor deposition of integrated circuit interconnects. Phys. Plasmas 5, 1624 (1998).CrossRefGoogle Scholar
12.Juliano, D.R., Ruzic, D.N., Allain, M.M.C., and Hayden, D.B.: Influences on ionization fraction in an inductively coupled ionized physical vapor deposition device plasma. J. Appl. Phys. 91, 605 (2002).CrossRefGoogle Scholar
13.Arunachalam, V., Rauf, S., Coronell, D.G., and Ventzek, P.L.G.: Integrated multi-scale model for ionized plasma physical vapor deposition. J. Appl. Phys. 90, 64 (2001).CrossRefGoogle Scholar
14.Chason, E., Sheldon, B.W., Freund, L.B., Floro, J.A., and Hearne, S.J.: Origin of compressive residual stress in polycrystalline thin films. Phys. Rev. Lett. 88, 156103 (2002).CrossRefGoogle ScholarPubMed
15.Friesen, C. and Thompson, C.V.: Reversible stress relaxation during precoalescence interruptions of Volmer-Weber thin film growth. Phys. Rev. Lett. 89, 126103 (2002).CrossRefGoogle ScholarPubMed
16.Sheldon, B.W., Lau, K.H.A., and Rajamani, A.: Intrinsic stress, island coalescence, and surface roughness during the growth of polycrystalline films. J. Appl. Phys. 90, 5097 (2001).CrossRefGoogle Scholar
17.Seel, S.C. and Thompson, C.V.: Tensile stress generation during island coalescence for variable island-substrate contact angles. J. Appl. Phys. 93, 9038 (2003).CrossRefGoogle Scholar
18.Detor, A., Hodge, A., Chason, E., Wang, Y., Xu, H., Conyers, M., Nikroo, A., and Hamza, A.: Stress and microstructure evolution in thick sputtered films. Acta Mater. 57, 2055 (2009).CrossRefGoogle Scholar
19.Alfonso, E.L., Jaquez, J.S., and Nikroo, A.: Gas permeation barrier characterization by mass spectrometry. Fusion Sci. Technol. 49, 773 (2006).CrossRefGoogle Scholar
20.Ilavsky, J. and Jemian, P.R.: Irena: Tool suite for modeling and analysis of small-angle scattering. J. Appl. Crystallogr. 42, 347 (2009).CrossRefGoogle Scholar
21.Freund, L.B. and Suresh, S.: Thin film materials: Stress, defect formation, and surface evolution (Cambridge University Press, Cambridge, 2003).Google Scholar
22.Okimura, K. and Nakamura, T.: Ionic densities and ionization fractions of sputtered titanium in radio frequency magnetron sputtering. J. Vac. Sci. Technol. A 21, 988 (2003).CrossRefGoogle Scholar
23.Rossnagel, S.M. and Hopwood, J.: Metal ion deposition from ionized magnetron sputtering discharge. J. Vac. Sci. Technol. B 12, 449 (1994).CrossRefGoogle Scholar
24.Aquaro, D. and DiPrinzio, M.: Molecular dynamics simulation of surface vaporization in beryllium plasma facing components. Fusion Eng. Des. 82, 1681 (2007).CrossRefGoogle Scholar
25.Zepeda-Ruiz, L.A., Chason, E., Gilmer, G., Wang, Y., Xu, H., Nikroo, A., and Hamza, A.: Understanding the relation between stress and surface morphology in sputtered films: Atomistic simulations and experiments. Appl. Phys. Lett. 95, 151910 (2009).CrossRefGoogle Scholar