Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T16:01:18.719Z Has data issue: false hasContentIssue false

Thermoelectric generators made of FeSi2 and HMS: Fabrication and measurement

Published online by Cambridge University Press:  03 March 2011

Erwin Groβ
Affiliation:
Institut für angewandte Physik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
Michael Riffel*
Affiliation:
Institut für angewandte Physik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
Ulrich Stöhrer
Affiliation:
Institut für angewandte Physik, Universität Karlsruhe, D-76128 Karlsruhe, Germany
*
a) Present address for all correspondence: German Aerospace Research Establishment, Institute of Materials Research, D-51140 Köln, Germany.
Get access

Abstract

Single couple thermoelectric generators consisting of n-type FeSi2 and p-type higher manganese silicide were developed and characterized. The leg and the bridge materials were prepared by a powder metallurgical method. Using the Peltier effect the transport properties were measured over the whole working temperature range. Electrical contacts suitable for the hot side could be obtained by conventional vacuum soldering and those for the cold side by ultrasonic soldering. The measured efficiency was in excellent agreement with the calculated values derived from the leg and contact properties.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nakajima, T., Suzuki, M., and Ohta, J., in Proc. 16th IECEC (1981), p. 2013.Google Scholar
2Uemura, K., Mori, Y., Imai, T., Nishida, I., Horie, S., and Kawaguchi, M., in Proc. 9th ICTEC, Nancy, France (1989), p. 151.Google Scholar
3Stöhrer, U., Voggesberger, R., Wagner, G., and Birkholz, U., in Proc. 8th ICTEC, Nancy, France (1989), p. 130.Google Scholar
4Stöhrer, U., Voggesberger, R., Wagner, G., and Birkholz, U., Energy Convers. Mgmt. 30 (2), 143 (1990).CrossRefGoogle Scholar
5Birkholz, U., Stöhrer, U., and Wagner, T., in Proc. 7th ICTEC, Arlington, TX (1988), p. 134.Google Scholar
6Hesse, J., Z. Angew. Phys. 28, 133 (1972).Google Scholar
7Piton, J-P. and Fay, M-F., C. R. Acad. Sci. (Paris) 266, 514 (1968).Google Scholar
8Mager, T. and Wachtel, E., Z. Metallk. 61, 853 (1970).Google Scholar
9Kawasumi, I., Sakata, M., Nishida, I., and Masumoto, K., J. Mater. Sci. 16, 355 (1981).CrossRefGoogle Scholar
10Groß, E., Neu, V., and Stöhrer, U., in Proc. 1lth ICTEC, Arlington, TX (1992), p. 107.Google Scholar
11Groß, E., Thesis Dissertation, Universitat Karlsruhe, Germany (1993).Google Scholar
12Scherrer, H., private communication.Google Scholar
13Coble, R. L. and Burke, J. E., in Reactivity of Solids, edited by DeBoer, J. H. (Elsevier Publishing, Amsterdam, 1961).Google Scholar
14Coble, R. L., J. Appl. Phys. 32 (5), 787 (1961).CrossRefGoogle Scholar
15Harman, T. C., J. Appl. Phys. 29, 1373 (1958).CrossRefGoogle Scholar
16Harman, T. C., Cahn, J. H., and Logan, M. J., J. Appl. Phys. 30 (9), 1351 (1959).CrossRefGoogle Scholar
17Stöhrer, U., Thesis Dissertation, Universität Karlsruhe, Germany. (1993).Google Scholar
18Stöhrer, U., in Proc. 11th ICTEC, Arlington, TX (1992), p. 191.Google Scholar
19Stöhrer, U., Meas. Sci. Technol. 5, 440446 (1994).CrossRefGoogle Scholar
20, Birkholz and Schelm, J., Phys. Status Solidi 27, 413 (1968).CrossRefGoogle Scholar
21Kojima, T., Phys. Status Solidi A 111, 233 (1989).CrossRefGoogle Scholar