Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-24T14:33:12.321Z Has data issue: false hasContentIssue false

Thermodynamics of the superconducting phase transformation in high Tc ceramics with magnetoelectric effects

Published online by Cambridge University Press:  31 January 2011

S. J. Burns
Affiliation:
Materials Science Program, Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627
Get access

Abstract

A second order phase transformation in a dielectric ceramic superconductor is shown to relate jumps in physical properties to the ratio of state variables, i.e., to the phase boundary, near the critical point. The major jumps in specific heat, compressibility, permittivity, permeability, and spinodal composition curvature, between the normal and superconducting phases, are found from the continuity of the entropy, volume, electromagnetic fields (with zero fields), and chemical equilibrium. The thermal expansion, pyroelectric effects, and the piezoelectromagnetic effects are important differences between ceramic and metallic superconductors. The most important conclusions from experimental measurements are that the lattice plays a minor role in the superconductor transformation while the magnetoelectric jump may be related to the jump in permeability, i.e., the Meissner effect, and the jump in permittivity. The oxygen miscibility gap which controls order/disorder transformations thermodynamically mandate that only metastable compositions are obtained in the metal oxide, so absolute stability of the system may never be achieved. An explicit criterion to suggest other superconductor systems is given from magnetoelectric materials, i.e., some of the pervoskites.

Type
Articles
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Miiller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Aohburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z.J., Wang, Y. Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Hewart, E. A., Dupuy, M., Bourret, A., Capponi, J.J., and Marezio, M., “High Resolution Electron Microscopy Structure of Ba2YCu307 Twin Boundaries,” submitted to Solid State Commun.Google Scholar
4Testardi, L., Moulton, W. G., Mathias, H., Ng, H. K., and C M . Rey, Phys. Rev. B 37, 2324 (1988).CrossRefGoogle Scholar
5Tranquada, J.M., Moudden, A.H., Goldman, A.I., Zolliker, P., Cox, D.E., Shirane, G., Sinha, S.K., Vaknin, D., Johnston, D. C ., Alvarez, M.S., and Jacobson, A.J., “Antiferromagnetism in YBa2Cu3O6i,” (Brookhaven National Laboratory, Upton, NY 11973 report: BNL #40965).Google Scholar
6Petitgrand, Daniel and Collin, Gaston, “Antiferromagnetism in YBa2Cu3O6,” Orsay High TcSuperconductors Preprints 7 (March 1988).Google Scholar
7Khachaturyan, A.G. and Morris, J.W., Phys. Rev. Lett. 59, 2776 (1987).CrossRefGoogle Scholar
8Hauck, J., Buckmann, K., and Zucht, F., J. Mater. Res. 2, 762 (1987).CrossRefGoogle Scholar
9Khachaturyan, A. G., Semenovskaya, S.V., and Morris, J.W., Phys. Rev. B 37, 2243 (1988).CrossRefGoogle Scholar
10Testardi, L. R., Phys. Rev. B 12, 3849 (1975).CrossRefGoogle Scholar
11Sham, L. J. and Smith, T. F., Phys. Rev. B 4, 3951 (1971).CrossRefGoogle Scholar
12Bishop, D.J., Gammel, P. L., Ramirez, A. P., Cava, R. J., Batlogg, B., and Rietman, E. A., Phys. Rev. B 35, 8788 (1987).CrossRefGoogle Scholar
13Bourne, L.C., Zettl, A., Chang, K.J., ML. Cohen, A.M. Stacey, and W.K. Ham, Phys. Rev. B 35, 8785 (1987).Google Scholar
14Horn, P. M., Keane, D. T., Held, G. A., Jordan-Sweet, J. L., Kaiser, D. L., Holtzberg, F., and Rice, T. M., Phys. Rev. Lett. 59, 2772 (1987).CrossRefGoogle Scholar
15Landau, L.D. and Lifshitz, E. M., Statistical Physics, 3rd ed., part 1, translated by Sykes, J.B. and Kearsley, M.J. (Pergamon Press Ltd., 1980), p. 451.Google Scholar
16Li, J.C.M., Metall. Trans. A 9A, 1353 (1978).Google Scholar
17Callen, H.B., Thermodynamics and an Introduction to Thermostatics, 2nd ed. (Wiley, New York, 1985).Google Scholar
18Pippard, A. B., Elements of Classical Thermodynamics (Cambridge University Press, 1966), p. 146.Google Scholar
19David, W.I. F., Edwards, P.P., Harrison, M.R., Jones, R., and Wilson, C.C., Nature 331, 245 (1988).CrossRefGoogle Scholar
20Rutgers, A.J., Physica 1, 1055 (1934).CrossRefGoogle Scholar
21Gorter, C. J. and Casimir, H., Physica 1, 306 (1934).CrossRefGoogle Scholar
22Hake, R.R., J.A.P. 40, 5148 (1969).Google Scholar
23Lynton, E. A., Superconductivity (Methuen & Co. Ltd., London, 1969), p. 14.Google Scholar
24Inderhees, S. E., Salamon, M. B., Friedmann, T. A., and Ginsberg, D. M., Phys. Rev. B 36, 2401 (1987).CrossRefGoogle Scholar
25Nevitt, M. V., Crabtree, G.W., and Klippert, T. E., ibid., 2398.Google Scholar
26Ledbetter, H.M., Austin, M.W., Kim, S.A., and Lei, Ming, J. Mater. Res. 2, 786 (1987).CrossRefGoogle Scholar
27Ledbetter, H. M., Austin, M. W., Kim, S. A., Datta, T., and Violet, C. E., ibid., 790.Google Scholar
28Migliori, A., Chen, T., Alanoi, B., and Gruner, G., Solid State Commun. 63, 827 (1987).CrossRefGoogle Scholar
29Burns, S. J., Goyal, A., and Funkenbusch, P. D., Scripta Metall. 22, 1129 (1988).CrossRefGoogle Scholar
30Nye, J. F., Physical Properties of Crystals (Oxford University Press, London, 1964).Google Scholar
31Birss, R.R., Symmetry and Magnetism (North Holland Publ. Co., Amsterdam, 1966).Google Scholar
32Schmid, H., in Magnetoelectric Interaction Phenomena in Crystals, edited by Freeman, A. J. and Schmid, H. (Gordon and Breach, London, 1975), pp. 121146; Int. J. Magnetism 4, 337 (1973).Google Scholar
33Parkin, S.S.P., Engler, E.M., Lee, V. Y., and Beyers, R. B., Phys. Rev. B 37, 131 (1988).CrossRefGoogle Scholar
34Stefanovskii, E. P. and Yablonskii, D.A., Sov. Phys. Solid State 28, 629 (1986).Google Scholar
35Rado, G.T., Phys. Rev. 128, 2546 (1962).CrossRefGoogle Scholar
36Vitebskii, I. M. and Lavrinenko, N. M., Sov. J. Low Temp. Phys. 12, 672 (1986).Google Scholar