Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T07:09:37.321Z Has data issue: false hasContentIssue false

Thermodynamic assessment of the MgO–Al2O3–SiO2 system

Published online by Cambridge University Press:  01 April 2005

Huahai Mao*
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
Olga Fabrichnaya
Affiliation:
Max-Planck-Institute fuer Metallforschung, 70569, Stuttgart, Germany
Malin Selleby
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
Bo Sundman
Affiliation:
Department of Materials Science and Engineering, Royal Institute of Technology (KTH), 100 44 Stockholm, Sweden
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Thermodynamic properties of the phases in the MgO–Al2O3–SiO2 system were assessed, resulting in a set of self-consistent thermodynamic data. The two ternary compounds, cordierite and sapphirine, were optimized from subsolidus reactions. The liquid phase was described by the ionic two-sublattice model with a new species AlO2−1, yielding the formula (Al+3,Mg+2)P(AlO2−1,O−2,SiO4−4,SiO20)Q. Projection of the liquidus surface was calculated. Various isothermal and isoplethal sections were compared with the experimental data.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Saunders, N. and Miodownik, A.P.: CALPHAD (Calculation of the Phase Diagram): A Comprehensive Guide (Elsevier Science, Oxford, U.K. 1998).Google Scholar
2. Hillert, M., Jansson, B., Sundman, B. and Ågren, J.: A two-sublattice model for molten solutions with different tendency for ionization. Metall. Trans. 16A, 261 (1985).CrossRefGoogle Scholar
3. Sundman, B.: Modification of the two-sublattice model for liquids. CALPHAD 15, 109 (1991).CrossRefGoogle Scholar
4. Wang, X., Hillert, M. and Sundman, B.: A Thermodynamic Evaluation of the CaO–Al2O3–SiO2 System. (TRITA-MAC-407, KTH, Stockholm, Sweden, 1989).Google Scholar
5. Fabrichnaya, O., Seifert, H.J., Weiland, R., Ludwig, T., Aldinger, F. and Navrotsky, A.: Phase equilibria and thermodynamics in the Y2O3–Al2O3–SO2-system. Z. Metallkd. 92, 1083 (2001).Google Scholar
6. Mao, H.H., Hillert, M., Selleby, M., and Sundman, B.: Thermodynamic assessment of the CaO–Al2O3–SiO2 system (unpublished).Google Scholar
7. Mysen, B.O.: Structure and Properties of Silicate Melts. (Elsevier, Amsterdam, The Netherlands, 1988).Google Scholar
8. Gutierrez, G., Belonoshko, A.B., Ahuja, R. and Johansson, B.: Structure properties of liquid Al2O3: A molecular dynamics study. Phys. Rev. E 61, 2723 (2000).CrossRefGoogle Scholar
9. Benoit, M. and Ispas, S.: Structural properties of molten silicates from ab initio molecular-dynamics simulations: Comparison between CaO–Al2O3–SiO2 and SiO2 . Phys. Rev. B 64, 224205 (2001).CrossRefGoogle Scholar
10. Gruener, G., Odier, P., Meneses, D.D., Florian, P. and Richet, P.: Bulk and local dynamics in glass-forming liquids: A viscosity, electrical conductivity, and NMR study of aluminosilicate melts. Phys. Rev. B 64 Art. 024206 2001.CrossRefGoogle Scholar
11. Belashchenko, D.K. and Skvortsov, L.V.: Molecular dynamics study of CaO–Al2O3 melts. Inorg. Mater. 37, 476 (2001).CrossRefGoogle Scholar
12. Weber, J.K.R., Krishnan, S., Ansell, S., Hixson, A.D. and Nordine, P.C.: Structure of liquid Y3Al5O12 (YAG). Phys. Rev. Lett. 84, 3622 (2000).CrossRefGoogle Scholar
13. Wilding, M.C., McMillan, P.F. and Navrotsky, A.: Thermodynamic and structural aspects of the polyamorphic transition in yttrium and other rare-earth aluminate liquids. Physica A 314, 379 (2002).CrossRefGoogle Scholar
14. Mao, H.H., Selleby, M., and Sundman, B.: Phase equilibria and thermodynamics in the Al2O3-SiO2 system–Modelling of mullite and liquid. J. Am. Ceram. Soc. 2005 (accepted).CrossRefGoogle Scholar
15. Mao, H.H., Selleby, M. and Sundman, B.: A reevalution of the liquid phase in the CaO–Al2O3 and MgO–Al2O3 system. CALPHAD 28, 307 (2004).CrossRefGoogle Scholar
16. Huang, W., Hillert, M. and Wang, X.: Thermodynamic assessment of the CaO–MgO–SiO2 system. Metall. Mater. Trans. 26A, 2293 (1995).CrossRefGoogle Scholar
17. Pelton, A.D. and Blander, M.: Thermodynamic analysis of ordered liquid solutions by a modified quasi-chemical approach—Application to silicate slag. Metall. Trans. B 17, 805 (1986).CrossRefGoogle Scholar
18. Kapoor, M.L. and Frohberg, G.M.: Cellular model for liquid phase, in Proc. Symp. Chemical Metallurgy of Iron and Steel, edited by Kapoor, M.L., Frohberg, M.G., and Kubaschewsk, O.: (Sheffield, U.K., 1971).Google Scholar
19. Gaye, H. and Welfringer, J.: Modelling of the thermodynamic properties of complex metallurgical slags. In Proc. 2nd Int. Symp. Metall. Slags and Fluxes, edited by Fine, H.A. and Gaskell, D.R. (TMS-AIME, Warrendale, PA, 1984, 357-75. Publ. Metall. Soc. AIME., New York, NY, 1984).Google Scholar
20. Larrain, J.M. and Kellogg, H.H.: Use of chemical species for correlation of solution properties, in Calculation of Phase Diagrams and Thermochemistry of Alloy Phases, edited by Chaug, Y.A. and Smith, J.J.. (Metall. Soc. AIME, Warrendale, PA, 1979).Google Scholar
21. Hastie, J.W., Horton, W.S., Plante, E.R. and Bonnell, D.W.: Thermodynamic models of alkali vapor transport in silicate systems. High Temp. High Press. 14, 669 (1982).Google Scholar
22. Björkman, B.: An assessment of the system Fe–O–SiO2 using a structure based model for the liquid silicate. CALPHAD 9, 271 (1985).CrossRefGoogle Scholar
23. Hoch, M.: Application of the Hoch–Arpshofen model to the SiO2–CaO–MgO–Al2O3 system. CALPHAD 12, 45 (1988).CrossRefGoogle Scholar
24. Berman, R.G. and Brown, T.H.: A thermodynamic model for multicomponent melts, with application to the system CaO–Al2O3–SiO2 . Geochim. Cosmochim. Acta 48, 661 (1984).CrossRefGoogle Scholar
25. Jung, I.H., Decterov, S.A. and Pelton, A.D.: Critical thermodynamic evaluation and optimization of the MgO–Al2O3, CaO–MgO–Al2O3, and MgO–Al2O3–SiO2 systems. J. Phas. Equ. Diff. 25, 329 (2004).CrossRefGoogle Scholar
26. Fabrichnaya, O., Silva, A. Costa e and Aldinger, F.: Assessment of thermodynamic functions in the MgO–Al2O3–SiO2 system. Z. Metallkd. 95, 793 (2004).CrossRefGoogle Scholar
27. Schreyer, W. and Schairer, J.F.: Compositions and structural states of anhydrous Mg-cordierites: A re-investigation of the central part of the system MgO–Al2O3–SiO2 . J. Petrol. 2, 324 (1961).CrossRefGoogle Scholar
28. Moore, P.B.: Crystal structure of sapphirine. Nature 218, 81 (1968).CrossRefGoogle Scholar
29. Kuzel, H.J.: Chemical formula and compostion of sapphirin. Neues. Jahrb. Mineral. Monatsh. 68(1961).Google Scholar
30. Smart, R.M. and Glasser, F.P.: The subsolidus phase equilibria and melting temperature of MgO–Al2O3–SiO2 compositions. Ceram. Int. 7, 90 (1981).CrossRefGoogle Scholar
31. Hillert, M.: The compound energy formalism. J. Alloys Compd. 320, 161 (2001).CrossRefGoogle Scholar
32. Frisk, K. and Selleby, M.: The compound energy formalism: Applications. J. Alloys Compd. 320, 177 (2001).CrossRefGoogle Scholar
33. 33 Fabrichnaya, O., Saxena, S.K., Richet, P., and Westrum, E.F.: Thermodynamic Data, Models and Phase Diagram in Multicomponent Oxide System (Springer, Berlin, Heidelberg, New York, NY, 2004), p. 198.CrossRefGoogle Scholar
34. Onuma, K. and Arima, M.: The join MgSiO3–MgAl2SiO6 and the solubility of Al2O3 in enstatite at atmospheric pressure. J. Jpn. Assoc. Min. Petr. Econ. Geol. 70, 53 (1975).CrossRefGoogle Scholar
35. Rankin, G.A. and Merwin, H.E.: The ternary system MgO–Al2O3–SiO2 . Am. J. Sci. 45, 301 (1918).CrossRefGoogle Scholar
36. Foster, W.R.: Synthetic sapphirine and its stability field in the system MgO–Al2O3–SiO2 . J. Am. Ceram. Soc. 33, 73 (1950).CrossRefGoogle Scholar
37. Keith, M.L. and Schairer, J.F.: The stability field of sapphirine in the system MgO–Al2O3–SiO2 . J. Geol. 60, 181 (1952).CrossRefGoogle Scholar
38. Aramaki, S. and Roy, R.: The mullite-corundum boundary in the systems MgO–Al2O3–SiO2 and CaO–Al2O3–SiO2 . J. Am. Ceram. Soc. 42, 644 (1959).CrossRefGoogle Scholar
39. Osborn, E.F. and Muan, A.: Specific diagrams B. Metal oxide systems. Phase Diagrams for Ceramists, edited by Levin, E.M., Robbins, C.R., and McMurdie, H.F. (Am. Ceram. Soc., Columbus, OH, 1964), Vol. 1, p. 264.Google Scholar
40. Smart, R.M. and Glasser, F.P.: Phase relations of cordierite and sapphirine in the system MgO–Al2O3–SiO2 . J. Mater. Sci. 11, 1459 (1976).CrossRefGoogle Scholar
41. Greig, J.W.: Immiscibility in silicate melts. Am. J. Sci. 13, 1 (1927).CrossRefGoogle Scholar
42. Henderson, D. and Taylor, J.: Thermodynamic properties in the CaO–MgO–SiO2 and MgO–Al2O3–SiO2 systems. J. Iron Steel Inst. 204, 41 (1966).Google Scholar
43. Rein, R.H. and Chipman, J.: Activities in the liquid solution SiO2–CaO–MgO–Al2O3 at 1600 °C. TMS-AIME 233, 415 (1965).Google Scholar
44. Charlu, T.V., Newton, R.C. and Kleppa, O.J.: Enthalpies of formation at 970 K of compounds in system MgO–Al2O3–SiO2 from high-temperature solution calorimetry. Geochim. Cosmochim. Acta 39, 1487 (1975).CrossRefGoogle Scholar
45. Roy, B.N. and Navrotsky, A.: Thermochemistry of charge-coupled substitutions in silicate-glasses—The systems M1/n n+AlO2–SiO2 (M = Li, Na, K, Rb, Cs, Mg, Ca, Sr, Ba, Pb). J. Am. Ceram. Soc. 67, 606 (1984).CrossRefGoogle Scholar
46. Robie, R.A., Hemingway, B.S. and Fisher, J.R.: Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at higher temperatures. US Geol. Surv. Bul. 1452, 456 (1978).Google Scholar
47. Kiseleva, I.A.: High-temperature heat-capacity of sapphirine. Geochem. Int. 113(1976).Google Scholar
48. Andersson, J-O., Helander, T., Höglund, L., Shi, P. and Sundman, B.: Thermo-Calc & DICTRA, computational tools for materials science. CALPHAD 26, 273 (2002).CrossRefGoogle Scholar
49. Saxena, S.K., Chatterjee, N., Fei, Y. and Shen, G.: Termodynamic Data on Oxides and Silicates (Springer Verlag, New York, 1993).CrossRefGoogle Scholar
50. Gottschalk, M.: Internally consistent thermodynamic data for rock-forming minerals in the system SiO2–TiO2– Al2O3–Fe2O3–CaO–MgO–FeO–K2O–Na2O–H2O–CO2 . Eur. J. Miner. 9, 175 (1997).CrossRefGoogle Scholar
51. Morita, K., Kume, K. and Sano, N.: A newly developed method for determining SiO2 activity of the silicate slags equilibrated with molten silicon alloys. ISIJ Int. 40, 554 (2000).CrossRefGoogle Scholar
52. Kume, K., Morita, K., Miki, T. and Sano, N.: Activity measurement of CaO–SiO2–AlO1.5–MgO slags equilibrated with molten silicon alloys. ISIJ Int. 40, 561 (2000).CrossRefGoogle Scholar
53. Dhima, B., Stafa, B. and Allibert, M.: Activity measurements in steel-making-related oxide melts by differential mass spectrometry. High Temp. Sci. 21, 143 (1986).Google Scholar
54. Björkvall, J. and Stolyarova, V.L.: A mass spectrometric study of Al2O3–SiO2 melts using a Knudsen cell. Rapid Commun. Mass Spectrom. 15, 836 (2001).CrossRefGoogle Scholar
55. Stolyarova, V.L.: A mass spectrometric study of the thermodynamic properties of oxide melts. Glass Phys. Chem. 27, 3 (2001).CrossRefGoogle Scholar
56. Kambayashi, S. and Kato, E.: A thermodynamic study of (magnesium-oxide + silicon dioxide) by mass-spectrometry at 1973 K. J. Chem. Thermodynam. 16, 241 (1984).CrossRefGoogle Scholar
57. Kambayashi, S. and Kato, E.: A thermodynamic study of (magnesium-oxide + silicon dioxide) by mass-spectrometry. J. Chem. Thermodynam. 15, 701 (1983).CrossRefGoogle Scholar
58. Zhang, Y.H. and Navrotsky, A.: Thermochemistry of glasses in the Y2O3–Al2O3–SiO2 system. J. Am. Ceram. Soc. 86, 1727 (2003).CrossRefGoogle Scholar
59. Zhang, Y.H. and Navrotsky, A.: Thermochemistry of rare-earth aluminate and aluminosilicate glasses. J. Non-Cryst. Solids 341, 141 (2004).CrossRefGoogle Scholar