Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T22:48:39.876Z Has data issue: false hasContentIssue false

Thermodynamic aspects of amorphous phase formation

Published online by Cambridge University Press:  03 March 2011

N. Saunders
Affiliation:
Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey, United Kingdom
A. P. Miodownik
Affiliation:
Department of Materials Science and Engineering, University of Surrey, Guildford, Surrey, United Kingdom
Get access

Abstract

The glass-forming ability of the three alloy systems Co–Zr, Cu–Zr, and Ni–Zr has been analyzed for three distinct production routes: (1) liquid quenching, (2) vapor deposition, and (3) solidstate reaction. Using the free energy and heats of formation curves obtained from the thermodynamic characterization of the respective alloy systems, a satisfactory rationale can be obtained for amorphous phase formation by all three routes. The analysis shows that while amorphous phase formation by quenching from the high-temperature liquid is clearly dependent on factors such as quench rate and the value TG/TM, it is the low-temperature stability of the amorphous phase relative to the other crystalline structures that enables amorphous phases to be formed by both vapor deposition and solid-state reaction. The underlying free energy curves indicate the interesting possibility of a supersaturation sequence in the nucleation of an amorphous phase by solid-state reaction. The principles underlying thermodynamic characterizations are briefly discussed, and a characterization for Co–Zr is presented.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schwarz, R. B. and Johnson, W. L., Phys. Rev. Lett. 51,415 (1983).CrossRefGoogle Scholar
2Saunders, N., CALPHAD J. 9(4), 301 (1985).Google Scholar
3van Laar, J. J., Z. Phys. Chem. 63, 216 (1908); 64, 257 (1908).CrossRefGoogle Scholar
4Kaufman, L., in Phase Stability in Metals and Alloys, edited by Rudman, P., Stringer, J., and Jaffee, R. I. (McGraw-Hill, New York, 1967), p. 125.Google Scholar
5Kaufman, L. and Bernstein, H., Computer Calculation of Phase Diagrams (Academic, New York, 1970).Google Scholar
6Chart, T. G., Counsell, J. F., Jones, G. P., Slough, W., and Spencer, P. J., Int. Met. Rev. 20, 57 (1975).CrossRefGoogle Scholar
7CALPHAD (Computer Calculation of Phase Diagrams) Journal, in general.Google Scholar
8Prince, A., Alloy Phase Equilibria (Elsevier, Amsterdam, 1966).CrossRefGoogle Scholar
9Gachon, J. C. and Hertz, J., CALPHAD 7(1), 1 (1983).CrossRefGoogle Scholar
10Elliot, R. P., Constitution of Binary Alloys, 1st Supplement (McGraw-Hill, New York, 1965).Google Scholar
11Shunk, F. A., Constitution of Binary Alloys, 2nd Supplement (McGraw-Hill, New York, 1969).Google Scholar
12Bataleva, S. K., Kuprina, V. V., Burnasheva, V. V., Markiv, V. Ya., Romani, G. N., and Kuznetsova, S. M., Vestn. Mosk. Univ. 5, 557 (1970).Google Scholar
13Miodownik, A. P., CALPHAD J. 1(1), 133 (1977).CrossRefGoogle Scholar
14Saunders, N., Miodownik, A. P., and Tanner, L. E., in Rapidly Quenched Metals V, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 191.CrossRefGoogle Scholar
15Saunders, N. and Miodownik, A. P., presented at CALPHAD XIII, Grenoble, France, May 1984.Google Scholar
16Kambli, U., Von Allmen, M., Saunders, N., and Miodownik, A. P., Appl. Phys. A 36, 189 (1985).CrossRefGoogle Scholar
17Saunders, N. and Miodownik, A. P. (to be published).Google Scholar
18Davies, H. A., Phys. Chem. Glasses 17, 159 (1976).Google Scholar
19Uhlmann, D. R., J. Non-Cryst. Solids 7, 337 (1972).CrossRefGoogle Scholar
20Christian, J. W., Theory of Phase Transformations in Metals and Alloys (Pergamon, Oxford, 1965), p. 377.Google Scholar
21Turnbull, D., J. Appl. Phys. 21, 1022 (1950).CrossRefGoogle Scholar
22Baker, J. C. and Cahn, J. W., Solidification (ASM, Metals Park, OH, 1975), p. 23.Google Scholar
23Boettinger, W. J., Coriell, S. R., and Sekerka, R. K., Mater. Sci. Eng. 65, 27 (1984).CrossRefGoogle Scholar
24Ramachandrarao, P., Cantor, B., and Cahn, R. W., J. Mater. Sci. 12, 2488 (1977).CrossRefGoogle Scholar
25Buschow, K. H. J., J. Phys. F 14, 593 (1984).CrossRefGoogle Scholar
26Buschow, K. H. J., J. Appl. Phys. 52, 3319 (1981).CrossRefGoogle Scholar
27Zielinski, P. G., Ostetek, J., Kijek, M., and Matyja, H., in Rapidly Quenched Metals III, edited by Cantor, B. (Metals Society, London, 1978), p. 337.Google Scholar
28Marshall, A. F., Walmsley, R. G., and Stevenson, D. A., Mater. Sci. Eng. 63, 215 (1984).CrossRefGoogle Scholar
29Felder, R. J. and Hauser, J. J., Mater. Lett. 2, 232 (1984).CrossRefGoogle Scholar
30Drehman, A. J. and Turnbull, D., Scr. Metall. 15, 543 (1981).CrossRefGoogle Scholar
31Perepezko, J. H., Rasmussen, D. H., Andersson, I. E., and Lopez, C. R. Jr., in Solidification and Casting (Metals Society, London, 1977), p. 169.Google Scholar
32Nishi, Y., Morohoshi, T., and Kawakami, M., in Rapidly Quenched Metals IV, edited by Masumoto, T. and Suzuki, K. (Japan Institute of Metals, Tokyo, 1981), p. 111.Google Scholar
33Walmsley, R. G., Ph. D. thesis, Stanford University, 1982.Google Scholar
34Samwer, K., Regenbrecht, A., and Schroder, H., Rapidly Quenched Metals V, edited by Steeb, S. and Warlimont, H. (North-Holland, Amsterdam, 1985), p. 1577.Google Scholar
35Ravex, A., Lasjaunias, J. C., and Bethoux, O., Sol. State Commun. 40, 853 (1981); Physica B and C 107B, 397 (1981).CrossRefGoogle Scholar
36Marshall, A. F., Lee, Y. S., and Stevenson, D. A., Acta. Metall. 31, 1225 (1983).CrossRefGoogle Scholar
37Saunders, N., Ph. D. thesis, University of Surrey, Guildford, United Kingdom, 1984.Google Scholar
38Saunders, N. and Miodownik, A. P., CALPHAD J. 9, (3) 283 (1985).CrossRefGoogle Scholar
39Lennard-Jones, J., Proc. R. Soc. London Ser. A 163, 127 (1963).Google Scholar
40Chopra, K. L., Thin Film Phenomena (McGraw-Hill, New York, 1969).Google Scholar
41Cantor, B. and Cahn, R. W., Acta Metall. 24, 845 (1976).CrossRefGoogle Scholar
42Chen, H. S. and Turnbull, D., J. Chem. Phys. 48, 2560 (1968).CrossRefGoogle Scholar
43Cantor, B. and Ramanchadrarao, P., Rapid Quenched Metals IV, edited by Masumoto, T. and Suzuki, K. (Japan Institute of Metals, Tokyo, 1981), p. 291.Google Scholar
44Saunders, N., Int. J. Rapid Solidification 1(4), 327 (1985).Google Scholar
45Kerns, A. J., Polk, D. E., Ray, R., and Giessen, B. C., Mater. Sci. Eng. 38, 49 (1979).CrossRefGoogle Scholar
46Ansara, I., Pasturel, A., and Buschow, K. H. J., Phys. Stat. Sol. A 69, 447 (1982).CrossRefGoogle Scholar
47Henaff, M. P., Colinet, C., Pasturel, A., and Buschow, K. H. J., J. Appl. Phys. 56, 307 (1984).CrossRefGoogle Scholar
48Atzmon, M., Verhoeven, J. D., Gibson, E. D., and Johnson, W. L., Appl. Phys. Lett. 45, 1052 (1984).CrossRefGoogle Scholar
49Clemens, B. M., Johnson, W. L., and Schwarz, R. B., in Proceedings of the 5th International Conference on Liquid and Amorphous Metals (North-Holland, Amsterdam, 1984), p. 817.Google Scholar
50Miedema, A. R. and de Chatel, P. F., Theory of Alloy Phase Formation, edited by Bennett, L. H. (ASM, Metals Park, OH, 1979), p. 344.Google Scholar
51Balluffi, R. W. and Blakely, J. M., Thin Sol. Films 25, 363 (1975).CrossRefGoogle Scholar
52Baglin, J. E. and Poate, J. M., in Thin Films: Interdiffusion and Reactions, edited by Poate, J., Tu, K., and Mayer, J. (Wiley, New York, 1978), p. 305.Google Scholar
53Gupta, D. and Ho, P. S., Thin Sol. Films 72, 399 (1980).CrossRefGoogle Scholar
54Chart, T. and Putland, F., CALPHAD J. 3(1), 9 (1979).CrossRefGoogle Scholar
55Kaufman, L., Z. Metallkd. 64, 250 (1973).Google Scholar