Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T15:59:26.028Z Has data issue: false hasContentIssue false

Thermodynamic analysis for the chemical vapor deposition of composite coatings from the Al–B–Ti–N–H–Cl–Ar system

Published online by Cambridge University Press:  31 January 2011

T.S. Moss
Affiliation:
Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332
John A. Hanigofsky
Affiliation:
Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332
W.J. Lackey
Affiliation:
Georgia Tech Research Institute, Georgia Institute of Technology, Atlanta, Georgia 30332
Get access

Abstract

Thermodynamic calculations were performed for chemical vapor deposition in the Al–B–Ti–N–H–Cl–Ar system in order to determine the feasibility of multiphase deposition. Reagent species used were BCl3, AlCl3, TiCl4, NH3, H2, and Ar; B2 was substituted for BCl3 to determine changes in deposition efficiency. Temperature and input molar concentrations were varied over a range of values to establish relationships among solid deposits. Through deposition diagrams, molar efficiency plots, and partial pressure graphs, several two and three phase regions were found to exist. The calculations indicate that the following dispersed phase composites could be prepared: A1N + BN + TiN, BN + TiN, BN + TiB2, BN + TiB2 + TiN, and TiB2 + TiN.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Lackey, W. J., Smith, A. W., Dillard, D. M., and Twait, D. J., in Proc. 10th Int. Conf. on Chemical Vapor Deposition, edited by Cullen, G. W. and Blocher, J. M., Jr. (Electrochemical Society, Pennington, NJ, 1987), pp. 10081027.Google Scholar
2.Powell, C. F., Campbell, I. E., and Gonser, B. W., Vapor-Plating (Wiley, New York, 1955), pp. 136143.Google Scholar
3.Blocher, J. M., Jr., “Nuclear Fuel Particles Coated with a Mixture of Pyrolytic Carbon and Silicon Carbide,” U.S. Patent 3 249 509, May 3, 1966.Google Scholar
4.Schwart, A. S. and Bokros, J. C., Carbon 5, 325330 (1967).CrossRefGoogle Scholar
5.Gebhardt, J. J., Decompos. Organomat. Compd. Refract. Ceram., Met., Met. Alloys, Proc. Int. Symp., 1967, 319320 (1968).Google Scholar
6.Yajima, S. and Hirai, T., J. Mater. Sci. 4, 424431 (1969).CrossRefGoogle Scholar
7.Nickl, J. J. and Schweitzer, K. K., in Proc. 2nd Int. Conf. on Chemical Vapor Deposition, edited by Blocher, J. M. and Withers, J. C. (Electrochemical Society, New York, 1970), pp. 297327.Google Scholar
8.Marinkovic, S., Suznjevic, C., Dezarov, I., Mihajlovic, A., and Cerovic, D., Carbon 8, 283295 (1970).CrossRefGoogle Scholar
9.Kaae, J. L. and Golden, T. D., J. Am. Chem. Soc. 54 (12), 605609 (1971).Google Scholar
10.Veigel, N. D., Blocher, J. M., and Browning, M. F., in Proc. 3rd Int. Conf. on Chemical Vapor Deposition, April 24–27, 1972, edited by Glaski, F. A. (American Nuclear Society, Hinsdale, IL, 1972), pp. 200213.Google Scholar
11.Nickl, J. J., Schweitzer, K. K., and Luxenberg, P., in Proc. 3rd Int. Conf. on Chemical Vapor Deposition, April 24–27, 1972, edited by Glaski, F. A. (American Nuclear Society, Hinsdale, IL, 1972), pp. 423.Google Scholar
12.Bokros, J. C., LaGrange, L. D., and Schoen, F. J., in Chemistry and Physics of Carbon-A Series of Advances, edited by Walker, P. L., Jr. and Thrower, P. A. (Marcel Dekker, New York, 1973), pp. 104164.Google Scholar
13.Fitzer, E. and Rohm, M., in Proc. 4th Int. Conf. on Chemical Vapor Deposition, October 8–11, 1973, edited by Wakefleld, G. F. and Blocher, J. M., Jr. (Electrochemical Society, Princeton, NJ, 1973), pp. 133134.Google Scholar
14.Nickl, J. J. and von Braunmuhl, C., J. Less-Common Met. 37, 317329 (1974).CrossRefGoogle Scholar
15.Akins, R. J. and Bokros, J. C., Carbon 12, 439452 (1974).CrossRefGoogle Scholar
16.Zirinsky, S. and Irene, E. A., J. Electrochem. Soc. Solid State Sci. Technol. 125 (2), 305314 (1978).Google Scholar
17.Landingham, R. L. and Taylor, R. W., in Materials Science Monographs, Vol. 6, Energy and Ceramics, edited by Vincenzini, P. (Elsevier Scientific Publishing Co., New York, 1980), pp. 494512.Google Scholar
18.Hirai, T. and Goto, T., J. Mater. Sci. 16, 1723 (1981).CrossRefGoogle Scholar
19.Hirai, T. and Goto, T., J. Mater. Sci. 16, 28772882 (1981).CrossRefGoogle Scholar
20.Hirai, T. and Hayashi, S., in Proc. 8th Int. Conf. on Chemical Vapor Deposition, edited by Blocher, J. M., Jr., Vuillard, G. E., and Wahl, G. (Electrochemical Society, Pennington, NJ, 1981), pp. 790797.Google Scholar
21.Wilkens, C. A., Thesis, M. S. in Ceramic Engineering, University of Illinois, Urbana, IL, 1981; also DOE-ER–01198–1360.Google Scholar
22.Hirai, T. and Hayashi, S., J. Mater. Sci. 17, 13201328 (1982).CrossRefGoogle Scholar
23.Hirai, T., in Emergent Process Methods for High Technology Ceramics, The Nineteenth University Conference on Ceramic Science, North Carolina State University, Raleigh, NC, November 810, 1982, edited by Robert F. Davis, Hayne Palmour III, and Richard L. Porter (Plenum Press, New York, 1984), pp. 329–345.Google Scholar
24.Hirai, T., Goto, T., and Sakai, T., in Emergent Process Methods for High Technology Ceramics, The Nineteenth University Conference on Ceramic Science, North Carolina State University, Raleigh, NC, November 810, 1982, edited by Robert F. Davis, Hayne Palmour III, and Richard L. Porter (Plenum Press, New York, 1984), pp. 347–358.Google Scholar
25.Stinton, D. P., Lackey, W. J., Lauf, R. J., and Besmann, T. M., Ceram. Eng. Sci. Proc. 5 (7–8), 668676 (1984).CrossRefGoogle Scholar
26.Stinton, D. P. and Lackey, W. J., Ceram. Eng. Sci. Proc. 6 (7–8), 707713 (1985).CrossRefGoogle Scholar
27.Taylor, A. J. and Paluzelle, R., Pyrolytic Carbon Infiltration and Fabrication of Pyrolytic Carbon Infiltrated Substrate, Y-DA–2123, Y–12 Plant, Oak Ridge, TN, February 22, 1968.Google Scholar
28.Caputo, A. J. and Lackey, W. J., Ceram. Eng. Sci. Proc. 5 (7–8), 654667 (1984).CrossRefGoogle Scholar
29.Caputo, A. J., Lackey, W. J., and Stinton, D. P., Ceram. Eng. Sci. Proc. 6 (7–8), 694706 (1985).CrossRefGoogle Scholar
30.Rossignol, J. Y., Langlais, F., and Naslain, R., in Proc. 9th Int. Conf. on Chemical Vapor Deposition, edited by Robinson, McD. (Electrochemical Society, Pennington, NJ, 1984), pp. 596614.Google Scholar
31.Fitzer, E. and Gadow, R., Am. Ceram. Soc. Bull. 65 (2), 326335 (1986).Google Scholar
32.Lamicq, P. L., Bernhart, G. A., Dauchier, M. M., and Mace, J. G., Am. Ceram. Soc. Bull. 65 (2), 336338 (1986).Google Scholar
33.Stinton, D. P., Caputo, A. J., and Lowden, R. A., Am. Ceram. Soc. Bull. 65 (2), 347350 (1986).Google Scholar
34.Chu, T. L. and Kelm, R. W., Jr., J. Electrochem. Soc. 122 (7), 9951000 (1975).CrossRefGoogle Scholar
35.Sano, M. and Aoki, M., Thin Solid Films 83, 247251 (1981).CrossRefGoogle Scholar
36.Randich, E. and Gerlach, T. M., Chemtech. 13, 102105 (1983).Google Scholar
37.Besmann, T. M. and Spear, K. E., J. Electrochem. Soc. Solid State Sci. Technol. 124 (5), 786797 (1977).Google Scholar
38.Becht, J. G. M., Put, P.J. Van Der, and Schoonman, J., Solid State Ionics 32/33, 789794 (1989).CrossRefGoogle Scholar
39.Sundgren, J-E., Thin Solid Films 128, 2144 (1985).CrossRefGoogle Scholar
40.Motojima, S. and Mizutani, H., J. Mater. Sci. 23, 34353439 (1988).CrossRefGoogle Scholar
41.Matsuda, T., Nakae, H., and Hirai, T., J. Mater. Sci. 22, 509514 (1988).CrossRefGoogle Scholar
42.Archer, N. J., in High Temperature Chemistry of Inorganic and Ceramic Materials, edited by Glassen, F. P. and Porter, P. E. (The Chemical Society, Burlington House, London, U.K., 1976), pp. 167180.Google Scholar
43.Clerc, G. and Gerlach, P., in Proc. 5th Int. Conf. on Chemical Vapor Deposition, edited by Blocher, J. M. (Electrochemical Society, Princeton, NJ, 1975), pp. 777785.Google Scholar
44.Frahme, C. E., Ph.D. Dissertation, Rutgers University, Piscataway, NJ, 1966.Google Scholar
45.Motojima, S., Tamura, Y., and Sugiyama, K., Thin Solid Films 88, 269 (1982).CrossRefGoogle Scholar
46.Takahashi, T., Itoh, H., and Takeuchi, A., J. Cryst. Growth 47, 245 (1979).CrossRefGoogle Scholar
47.Takahashi, T., Itoh, H., and Kuroda, M., J. Cryst. Growth 53, 418 (1981).CrossRefGoogle Scholar
48.Pauleau, Y., Bouteville, A., Hantzpergue, J. J., and Remy, J. C., in Proc. 8th Int. Conf. on Chemical Vapor Deposition, edited by Blocher, J. M. (Electrochemical Society, Pennington, NJ, 1981), pp. 104115.Google Scholar
49.Morita, M., Uesugi, N., Iogai, S., Tsubouchi, K., and Micoshiba, N., Jpn. J. Appl. Phys. 20, 17 (1981).CrossRefGoogle Scholar
50.Bauer, J., Biste, L., and Bolze, D., Phys. Status Solidi A 39, 173 (1977).CrossRefGoogle Scholar
51.Suzuki, M. and Tanji, H., in Proc. 10th Int. Conf. on Chemical Vapor Deposition, edited by Cullen, G. W. (Electrochemical Society, Pennington, NJ, 1987), pp. 10891097.Google Scholar
52.Chubachi, Y., Bato, K., and Kojima, K., Thin Solid Films 122, 259 (1984).CrossRefGoogle Scholar
53.Arnold, H., Biste, L., Bolze, D., and Eichhorn, G., Krist. Technol. 11, 17 (1976).CrossRefGoogle Scholar
54.Randich, E. and Gerlach, T. M., Thin Solid Films 75, 271291 (1981).CrossRefGoogle Scholar
55.Caputo, A. J., Lackey, W. J., Wright, I. G., and Angelini, P., J. Electrochem. Soc. 132 (9), 22742280 (1985).CrossRefGoogle Scholar
56.Pierson, H. O. and Mullendorf, A. W., Thin Solid Films 72, 511516 (1980).CrossRefGoogle Scholar
57.Takahashi, T. and Kamiya, H., J. Cryst. Growth 26, 203209 (1974).CrossRefGoogle Scholar
58.Motojima, S. and Azuma, R., J. Mater. Sci. 23, 43754378 (1988).CrossRefGoogle Scholar
59.Michalski, J. and Wierzchon, T., J. Mater. Sci. Lett. 8, 779780 (1989).CrossRefGoogle Scholar
60.Ianno, N. J., Ahmed, A. U., and Englebert, D. E., J. Electrochem. Soc. 136 (1), 276280 (1989).CrossRefGoogle Scholar
61.Kato, A. and Nobuyuki, T., J. Cryst. Growth 29 (1), 5560 (1975).CrossRefGoogle Scholar
62.Teyssandier, F., Bernard, C., and Ducarroir, M., J. Mater. Sci. 23, 135140 (1988).CrossRefGoogle Scholar
63.Twait, D. J., Lackey, W. J., Smith, A. W., Lee, W. Y., and Hanigofsky, J. A., J. Am. Ceram. Soc. 73 (6), 15101518 (1990).CrossRefGoogle Scholar
64.Lee, W. Y., Ph.D. Thesis in Chemical Engineering, Georgia Institute of Technology, Atlanta, GA, 1990.Google Scholar
65.Besmann, T. M., SOLGASMIX-PV, A Computer Program to Calcu-late Equilibrium Relationships in Complex Chemical Systems, ORNL/TM–5775, Oak Ridge National Laboratory, Oak Ridge, TN, April 1975.Google Scholar
66. JANAF Thermochemical Tables, 3d ed., Parts I and II; J. Phys. Chem. Ref. Data 14, Supplement No. 1 (1985).Google Scholar
67.Barin, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances: Supplement (Springer-Verlag, Berlin, 1977).CrossRefGoogle Scholar