Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T10:48:01.806Z Has data issue: false hasContentIssue false

Thermochemistry of Si6–zAlzOzN8–z(z = 0 to 3.6) materials

Published online by Cambridge University Press:  31 January 2011

Jian-Jie Liang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Alexandra Navrotsky
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Valerie J. Leppert
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Michael J. Paskowitz
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Subhash H. Risbud
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616
Thomas Ludwig
Affiliation:
Max-Planck-Institut für Metallforschung, Abteilung Aldinger/Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
Hans J. Seifert
Affiliation:
Max-Planck-Institut für Metallforschung, Abteilung Aldinger/Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
Fritz Aldinger
Affiliation:
Max-Planck-Institut für Metallforschung, Abteilung Aldinger/Pulvermetallurgisches Laboratorium, Heisenbergstrasse 5, D-70569 Stuttgart, Germany
Mamoru Mitomo
Affiliation:
National Institute of Research in Inorganic Materials, 1–1 Namiki, Tsukuba, Ibaraki 305, Japan
Get access

Abstract

Enthalpies of formation were determined for β-sialon phases (Si6–zAlzOzN8–z, z = 0.46 to 3.6) by high-temperature oxidative drop solution calorimetry using an alkali-metal borate (52 wt% LiBo2; 48 wt% NaBO2) solvent. Oxygen gas was bubbled through the melt to accelerate oxidation of the oxynitride samples during dissolution. Sialons near z = 2 appear less stable energetically than ones with higher or lower nitrogen content. A large configurational entropy contribution for sialons with z > 2 may further stabilize these materials. This larger free energy driving form may be the reason for success in pulse-activated processing of these materials. The enthalpies of formation further suggest that a greater driving form for oxynitride formation exists in batch synthesis using SiO2 rather than Al2O3.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Mitomo, M. and Petzow, G., MRS Bull. 20(2), 19 (1995).CrossRefGoogle Scholar
2.Hoffman, M.J. and Petzow, G., in Silicon Nitride Ceramics—Scientific and Technological Advances, edited by Chen, I-W., Becher, P.F., Mitomo, M., Petzow, G., and Yen, T-S. (Mater. Res. Soc. Symp. Proc. 287, Pittsburgh, PA, 1993), p. 3.Google Scholar
3.Jack, K.H., J. Mater. Sci. 11, 1135 (1976).CrossRefGoogle Scholar
4.Oyama, Y. and Kamigaito, O., Jpn. J. Appl. Phys. 10, 1637 (1971).CrossRefGoogle Scholar
5.Jack, K.H. and Wilson, W.I., Nat. Phys. Sci. 238, 28 (1972).CrossRefGoogle Scholar
6.Rahaman, M.N., Riley, F.L., and Brook, R.J., J. Am. Ceram. Soc. 63, 648 (1980).CrossRefGoogle Scholar
7.Umebayashi, S., Kishi, K., Tani, E., and Kobayashi, K., Yogyo Kyokaishi 92, 35 (1984).CrossRefGoogle Scholar
8.Ekström, T., Käu, P. O., Nygren, M., and Olsson, P.O., J. Mater. Sci. 24, 1853 (1989).CrossRefGoogle Scholar
9.Briggs, J., Mater. Res. Bull. 12, 1047 (1977).CrossRefGoogle Scholar
10.Lee, J.G. and Cutler, I.B., Am. Ceram. Soc. Bull. 58, 869 (1979).Google Scholar
11.Ramesh, P.D. and Rao, K.J., J. Mater. Res. 9, 1929 (1994).CrossRefGoogle Scholar
12.Lis, J., Majorowski, S., Puszynski, J.A., and Hlavacek, V., Ceram. Bull. 70, 1658 (1991).Google Scholar
13.Elder, S., Disalvo, F.J., Topor, L., and Navrotsky, A., Chem. Mater. 5, 1545 (1993).CrossRefGoogle Scholar
14.McHale, J., Kowach, G.R., Navrotsky, A., and Disalvo, F.J., Chem. Eur. J. 2, 1514 (1996).CrossRefGoogle Scholar
15.McHale, J.M., Navrostsky, A., Kowach, G.R., Balbarin, V.E., and DiSalvo, F.J., Chem. Mater. 9, 3096 (1997).CrossRefGoogle Scholar
16.Navrotsky, A., Risbug, S.H., Liang, J-J., and Leppert, V.J., J. Phys. Chem. B 101, 9433 (1997).CrossRefGoogle Scholar
17.Liang, J-J., Topor, L., Navrotsky, A., Kanke, Y., and Mitomo, M., J. Mater. Sci. 14, 1959 (1999).Google Scholar
18.Risbud, S.H. and Shan, C.H., Mater. Sci. Eng. A204, 1460 (1995).Google Scholar
19.Shon, I.J., Munir, Z.A., Yamazaki, K., and Shoda, K., J. Am. Ceram. Soc. 79, 875 (1996).CrossRefGoogle Scholar
20.Miyamoto, Y., Tanaka, K., Shimada, M., and Jouzumi, M., in Ceramic Materials and Components for Engines, edited by Bunk, W. and Hausner, H. (Deutsche Keramische Gesellschaft, Luebeck-Travemuende, Germany, 1986), p. 271.Google Scholar
21.Ingelström, N. and Ekström, T., Proceedings of International Conference on Hot Isostatic Pressing, Lulea, Sweden, 15–16 June 1987 (Centek, Sweden, 1988).Google Scholar
22.Larson, A.C. and Von Dreele, R.B., GSAS: General Structure Analysis System (Los Alamos National Laboratory, Los Alamos, NM, 1994).Google Scholar
23.Navrotsky, A., Phys. Chem. Miner. 2, 89 (1977).CrossRefGoogle Scholar
24.Navrotsky, A., Phys. Chem. Miner. 24, 222 (1997).CrossRefGoogle Scholar
25.Mitomo, M., Kuramoto, N., Tsutsumi, M., and Suzuki, H., Yogyo-Kyokaishi 86, 26 (1978).CrossRefGoogle Scholar
26.Land, P.L., Wimmer, J.M., Burns, R.W., and Choudbury, N.S.. J. Am. Ceram. Soc. 61, 56 (1978).CrossRefGoogle Scholar
27.Takase, A., Umebayashi, S., and Kishi, K., J. Mater. Sci. Lett. 1, 529 (1982).CrossRefGoogle Scholar
28.Haviar, M. and Johannesen, Ø., Adv. Ceram. Mater. 3, 405 (1988).CrossRefGoogle Scholar
29.Chase, M.W. Jr, Davis, C.A., Downey, J.R. Jr, Frurip, D.J., McDonald, R.A., and Syverud, A.N., J. Phys. Chem. Ref. Data 14, Suppl. 1, part II, 1540 (1985).Google Scholar
30.Navrotsky, A., Am. Mineral. 79, 589 (1994).Google Scholar
31.Robie, R.A. and Hemingway, B.S., Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and high temperatures, U.S. Geol. Survey Bull. 2131 (U.S. Geological Survey, Washington, D.C., 1995).Google Scholar
32.Dumitrescu, L. and Sundman, B., J. Eur. Ceram. Soc. 15, 239 (1995).CrossRefGoogle Scholar
33.Mitomo, M., Kuramoto, N., and Inomata, Y., J. Mater. Sci. 14, 2309 (1979).CrossRefGoogle Scholar
34.Bandyophadyay, S. and Mukerji, J., J. Am. Ceram. Soc. 70, C273 (1987).Google Scholar