Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T20:52:36.769Z Has data issue: false hasContentIssue false

Thermochemistry and electrical contact properties at the interface between semiconducting BaTiO3 and (Au–Ti) electrodes

Published online by Cambridge University Press:  31 January 2011

David P. Cann
Affiliation:
The Center for Dielectric Studies, The Pennsylvania State University, University Park, Pennsylvania 16802
Clive A. Randall
Affiliation:
The Center for Dielectric Studies, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

The interfacial characteristics of positive temperature coefficient of resistance (PTCR) BaTiO3-electrode interfaces were studied. Sessile drop wetting experiments in combination with measurements of the contact resistance of the interface were used to establish a fundamental perspective of the electrode-ceramic interface. It was shown that the thermodynamic work of adhesion Wad), which is the sum of the strengths of chemical interactions present at the interface, can be manipulated by the addition of chemically active elements to the electrode metal which enhance adhesion. This same procedure is shown to modify the important electrical interfacial properties such as the contact resistance.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kanda, A., Tashiro, S., and Igarashi, H., Jpn. J. Appl. Phys. 33, 5431 (1994).CrossRefGoogle Scholar
2.Heywang, W.J. Mater. Sci. 6, 1214 (1971).CrossRefGoogle Scholar
3.Saburi, O., J. Phys. Soc. Jpn. 14, 1159 (1959).CrossRefGoogle Scholar
4.Turner, D. R. and Sauer, H. A., J. Electrochem. Soc. 107, 250 (1960).CrossRefGoogle Scholar
5.Sauer, H. A. and Flaschen, S. S., Ceram. Bull. 39, 304 (1960).Google Scholar
6.Landis, H. M., J. Appl. Phys. 36, 2000 (1965).CrossRefGoogle Scholar
7.Sussmann, R. and Ern, V., J. Am. Ceram. Soc. 48, 543 (1965).CrossRefGoogle Scholar
8.Wemple, S. H., Kahng, D., Berglund, C. N., and Van Uitert, L. G., J. Appl. Phys. 38, 799 (1967).CrossRefGoogle Scholar
9.Fleming, J. W. and O'Brien, H. M., Ceram. Bull. 55, 715 (1976).Google Scholar
10.Narayan, J. and Shukula, V. N., J. Appl. Phys. 51, 3444 (1980).CrossRefGoogle Scholar
11.Neville, R. C. and Mead, C. A., J. Appl. Phys. 43, 4657 (1972).CrossRefGoogle Scholar
12.Kahng, D. and Wemple, S. H., J. Appl. Phys. 36, 2925 (1965).CrossRefGoogle Scholar
13.Wemple, S. H., Kahng, D., and Braun, H. J., J. Appl. Phys. 38, 353 (1967).CrossRefGoogle Scholar
14.Wemple, S. H., in Ohmic Contacts to Semiconductors, edited by Schwartz, B. (The Electrochemical Society, New York, 1969).Google Scholar
15.Szydlo, N. and Poirier, R., J. Appl. Phys. 51, 3310 (1980).CrossRefGoogle Scholar
16.Kurtin, S., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 22, 1433 (1969).CrossRefGoogle Scholar
17.Rhoderick, E. H. and Williams, R. H., Metal-Semiconductor Contacts (Clarendon Press, Oxford, England, 1988).Google Scholar
18.Brillson, L. J., Surf. Sci. Rep. 2, 123 (1982).CrossRefGoogle Scholar
19.Louie, S. G., Chelikowsky, J. R., and Cohen, M. L., Phys. Rev. B 15, 2154 (1982).CrossRefGoogle Scholar
20.Phillips, J. C., Solid State Commun. 12, 861 (1973).CrossRefGoogle Scholar
21.Chatain, D., Coudurier, L., and Eustathopolous, N., Rev. Phys. Appl. 23, 1055 (1988).CrossRefGoogle Scholar
22.Miedema, A. R., De Boer, F. R., Boom, R., and Dorleijn, J. W. F., CALPHAD 1, 353 (1977).CrossRefGoogle Scholar
23.De Boer, F. R., Boom, R., Mattens, W. C. M., Miedema, A. R., and Niessen, A. K., Cohesion in Metals (North Holland, New York, 1988).Google Scholar
24.Li, J. G., Coudurier, L., and Eustathopolous, N., J. Mater. Sci. 24, 1109 (1989).CrossRefGoogle Scholar
25.Kurkjian, C. R. and Kingery, W. D., J. Phys. Chem. 60, 961 (1956).CrossRefGoogle Scholar
26.Nicolas, M. G., Valentine, T. M., and Waite, M. J., J. Mater. Sci. 15, 2197 (1980).CrossRefGoogle Scholar
27. Ju. Naidich, V., Prog. Surf. Memb. Sci. 14, 353 (1981).CrossRefGoogle Scholar
28.Espie, L., Drevet, B., and Eustathopolous, N., Metall. Mater. Trans. 25A, 999 (1994).Google Scholar
29.Xiao, P. and Derby, B., J. Mater. Sci. 30, 5915 (1995).CrossRefGoogle Scholar
30.Basu, H. S. and Maiti, R. N., Mater. Res. Bull. 21, 1107 (1986).Google Scholar
31.Cann, D. P. and Randall, C. A., J. Appl. Phys. 80 (1996).CrossRefGoogle Scholar
32.Standing, R. and Nicholas, M., J. Mater. Sci. 13, 1509 (1978).CrossRefGoogle Scholar
33.Crispin, R. M. and Nicholas, M., J. Mater. Sci. 11, 17 (1976).CrossRefGoogle Scholar
34.Kritsalis, P., Merlin, V., Coudurier, L., and Eustathopolous, N., Acta Metall. Mater. 40, 1167 (1992).CrossRefGoogle Scholar