Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T11:52:28.422Z Has data issue: false hasContentIssue false

A thermally sensitive energy-absorbing composite functionalized by nanoporous carbon

Published online by Cambridge University Press:  31 January 2011

Weiyi Lu
Affiliation:
Department of Structural Engineering, University of California—San Diego, La Jolla, California 92093-0085
Venkata K. Punyamurtula
Affiliation:
Department of Structural Engineering, University of California—San Diego, La Jolla, California 92093-0085
Aijie Han
Affiliation:
Department of Chemistry, University of Texas—Pam America, Edinburg, Texas 78539
Taewan Kim
Affiliation:
Program of Materials Science & Engineering, University of California—San Diego, La Jolla, California 92093
Yu Qiao*
Affiliation:
Department of Structural Engineering, University of California—San Diego, La Jolla, California 92093-0085; and Program of Materials Science & Engineering, University of California—San Diego, La Jolla, California 92093
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

A polypropylene-matrix composite material functionalized by nanoporous particulates was produced. When the temperature is relatively low, the matrix dominates the system behavior. When the temperature is relatively high, with a sufficiently large external pressure the polymer phase can be intruded into the nanopores, providing an energy absorption mechanism.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Barbero, E.J.: Introduction to Composite Materials Design (Taylor Francis, Philadelphia, PA, 1999).Google Scholar
2.Brinson, H.F. and Brinson, L.C.: Polymer Engineering Science and Viscoelasticity (Springer, New York, 2008).CrossRefGoogle Scholar
3.Bunsell, A.R.: Fiber Reinforcements for Composite Materials (Elsevier, New York, 1988).Google Scholar
4.Mazumdar, S.: Composites Manufacturing: Materials, Product, and Process Engineering (CRC Press, Boca Raton, FL, 2002).Google Scholar
5.Pinnavaia, T.J. and Beall, G.W.: Polymer-Clay Nanocomposites (John Wiley Sons, New York, 2000).Google Scholar
6.Daniel, I.S. and Ishai, O.: Engineering Mechanics of Composite Materials (Oxford University Press, New York, 1994).Google Scholar
7.Lu, G. and Yu, T.: Energy Absorption of Structures and Materials (Woodhead Publishing, Abington, UK, 2003).Google Scholar
8.Twardowski, T.E.: Introduction to Nanocomposite Materials (Destech Publishing, Lancaster, PA, 2007).Google Scholar
9.Park, H.S. and Liu, W.K.: An introduction and tutorial on multiple scale analysis in solids. Comput. Methods Appl. Mech. Eng. 193, 1733 (2004).CrossRefGoogle Scholar
10.Kong, X., Chakravarthula, S.S., and Qiao, Y.: Evolution of collective damage in a polyamide 6-silicate nanocomposite. Int. J. Solids Struct. 43, 5969 (2006).CrossRefGoogle Scholar
11.Han, A., Punyamurtula, V.K., Kim, T., and Qiao, Y.: The upper limit of energy density of nanoporous materials functionalized liquid. J. Mater. Eng. Perform. 17, 326 (2008).CrossRefGoogle Scholar
12.Surani, F.B. and Qiao, Y.: An energy absorbing polyelectrolyte gel matrix composite material. Composites Part A 37, 1554 (2006).CrossRefGoogle Scholar
13.Han, A., Punyamurtula, V.K., and Qiao, Y.: Infiltration of liquid metals in a nanoporous carbon. Philos. Mag. Lett. 88, 67 (2008).CrossRefGoogle Scholar
14.Han, A., Punyamurtula, V.K., and Qiao, Y.: Effects of decomposition treatment temperature on infiltration pressure of a surface modified nanoporous silica gel. Chem. Eng. J. 139, 426 (2008).CrossRefGoogle Scholar
15.Surani, F.B., Han, A., and Qiao, Y.: Thermal recoverability of a polyelectrolyte modified, nanoporous silica based system. J. Mater. Res. 21, 2389 (2006).CrossRefGoogle Scholar
16.Surani, F.B. and Qiao, Y.: Energy absorption of a polyacrylic acid partial sodium salt modified nanoporous system. J. Mater. Res. 21, 1327 (2006).CrossRefGoogle Scholar
17.Nesterenko, V.: Dynamics of Heterogeneous Materials (Springer, New York, 2001).CrossRefGoogle Scholar
18.Han, A., Punyamurtula, V.K., and Qiao, Y.: Heat generation associated with pressure induced infiltration in a nanoporous silica gel. J. Mater. Res. 23, 1902 (2008).CrossRefGoogle Scholar
19.Yoganandan, N., Zhang, J., and Pintar, F.: Force and acceleration corridors from lateral head impact. Traffic Inj. Prev. 5(4), 368 (2004).CrossRefGoogle ScholarPubMed
20.Kleman, M. and Lavrentovich, O.D.: Soft Matter Physics (Springer- Verlag, New York, 2003).Google Scholar
21.Ibach, H.: Physics of Surfaces and Interfaces (Springer-Verlag, Berlin, 2006).Google Scholar
22.Han, A. and Qiao, Y.: Controlling infiltration pressure of a nanoporous silica gel via surface treatment. Chem. Lett. 36, 882 (2007).CrossRefGoogle Scholar
23.Qiao, Y., Cao, G., and Chen, X.: Effects of gas molecules on nanofluidic behaviors. J. Am. Chem. Soc. 129, 2355 (2007).CrossRefGoogle ScholarPubMed
24.A, Han, X, Kong, Y, Qiao. Pressure induced infiltration in nanopores. J. Appl. Phys. 100, 014308 (2006).Google Scholar