Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T04:57:22.849Z Has data issue: false hasContentIssue false

Thermally induced solute migration in 2011 Al alloy implanted with Ti, Cr, or Al ions

Published online by Cambridge University Press:  31 January 2011

J. W. Chu
Affiliation:
Australian Nuclear Science and Technology Organisation, Private Mailbag 1, Menai, NSW 2234, Australia
P. J. Evans*
Affiliation:
Australian Nuclear Science and Technology Organisation, Private Mailbag 1, Menai, NSW 2234, Australia
D. K. Sood
Affiliation:
Royal Melbourne Institute of Technology, GPO Box 2746V, Melbourne, VIC 3001, Australia
*
(b)Authors to whom correspondence should be addressed.
Get access

Abstract

A systematic experimental study of solute migration during thermal annealing and oxidation of type 2011 aluminum alloy is described. Specimens of this alloy were implanted with Ti, Cr, or Al ions to doses in the range 2 × 1015–2 × 1017 ions cm-2. The implanted substrates were annealed at 500 °C in vacuum or an oxygen atmosphere and analyzed with Rutherford backscattering and scanning electron microscopy. Changes to the alloy composition resulting from segregation of constituents in the near surface region occurred for both implanted and unimplanted specimens, though the effect was substantially more pronounced following implantation. In addition, segregation was affected by the type and dose of the implanted ion. For the Ti implants under oxidizing conditions, the Ti ions were found to diffuse toward the surface and form a thick oxide layer. Segregation of Cu and Pb/Bi then occurred below this oxide layer. In contrast, implanted Cr ions under similar conditions were observed to diffuse into the substrate with only a thin oxide layer being formed at the surface. Consequently, Cu and Pb/Bi segregated close to the surface.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kubaschewski, O. and Hopkins, B. E., Oxidation of Metal and Alloys, 2nd ed. (Butterworth, London, 1967).Google Scholar
2.Nowotny, J., Diffusion in Solids and High Temperature Oxidation of Metals (Trans. Tech, Zurich, 1992).CrossRefGoogle Scholar
3.Wood, G. C., Oxid. Met. 2, 11 (1970).CrossRefGoogle Scholar
4.Dearnley, G., Benjamin, J. D., Miller, W. S., and Weidman, L., Corr. Sci. 16, 717 (1976).Google Scholar
5.Dearnley, G., Nucl. Instrum. Methods 182/183, 899 (1981).CrossRefGoogle Scholar
6.Stott, F. H., Peide, Z., Grant, W. A., and Procter, R. P. M., Corr. Sci. 22, 305 (1982).CrossRefGoogle Scholar
7.Kaufmann, E. N., Musket, R. G., Truhan, J. J., Ggraboski, K. S., Gossett, C. R., and Singer, I. L., Nucl. Instrum. Methods 209/210, 953 (1983).CrossRefGoogle Scholar
8.Hou, P. Y. and Stringer, J., Oxid. Met. 34, 299 (1990).CrossRefGoogle Scholar
9.Kramer, K. M., Tesmer, J. R., and Nastasi, M., Nucl. Instrum. Methods B 59/60, 865 (1991).CrossRefGoogle Scholar
10.Rao, Z., Williams, J. S., and Sood, D. K., Surf. Coatings Technol. 51, 5256 (1992).CrossRefGoogle Scholar
11.Rao, Z., Williams, J. S., and Sood, D. K., Nucl. Instrum. Methods B 73, 362366 (1993).CrossRefGoogle Scholar
12.Slater, M., Carter, G., and Grant, W. A., Nucl. Instrum. Methods 209/210, 1023 (1983).CrossRefGoogle Scholar
13.Chu, J.W., Dytlewski, N., Evans, P.J., and Sood, D.K., Nucl. Instrum. Methods B 80/81, 289293 (1993).CrossRefGoogle Scholar
14.Meetham, G. W., J. Mater. Sci. 26, 853 (1991).CrossRefGoogle Scholar
15.Marwick, A. D., Piller, R. C., and Sivell, P. M., J. Nucl. Mater. 83, 35 (1979).CrossRefGoogle Scholar
16.Lam, N. Q., Janghorban, K., and Ardell, A. J., J. Nucl. Mater. 101, 314 (1981).CrossRefGoogle Scholar
17.Averback, R. S., Rehn, L. E., and Wagner, W., J. Nucl. Mater. 118, 83 (1983).CrossRefGoogle Scholar
18.Rehn, L. E., Averback, R. S., and Okamoto, P. R., Mater. Sci. Eng. 69, 1 (1985).CrossRefGoogle Scholar
19.Metals Handbook, 9th ed., Vol. 2.Google Scholar
20.Brown, I. G., Galvin, J. E., Gavin, B. F., and MacGill, R. A., Rev. Sci. Instrum. 57, 1069 (1986).CrossRefGoogle Scholar
21.Brown, I. G., Feinberg, B., and Galvin, J. E., J. Appl. Phys. 63, 4889 (1988).CrossRefGoogle Scholar
22.Ziegler, J. F., Biersack, J. P., and Littmark, U., The Stopping and Range of Ions in Solids (Permagon, New York, 1985).Google Scholar
23.Doolittle, L. R., Nucl. Instrum. Methods B 9, 334 (1985).CrossRefGoogle Scholar
24.Sood, D. K., Radiat. Eff 63, 14 (1982).CrossRefGoogle Scholar