Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T23:32:56.041Z Has data issue: false hasContentIssue false

Thermal transport through thin films: Mirage technique measurements on aluminum/titanium multilayers

Published online by Cambridge University Press:  31 January 2011

E. J. Gonzalez
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. E. Bonevich
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. R. Stafford
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
G. White
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
D. Josell
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Get access

Abstract

Thermal transport properties of multilayer thin films both normal and parallel to the layers were measured. Al/Ti multilayer films 3 μm thick, with individual layers systematically varied from 2.5 to 40 nm, were studied on Si substrates. Layers of Al and Ti were nominally equal in thickness, with actual composition determined for each specimen using energy dispersive spectroscopy. The thermal diffusivity both in the plane and normal to the plane of the films (thermal conductivity divided by specific heat per volume) was found to decrease significantly with decreasing bilayer thickness. Pure Ti and Al films as well as Cu films from 0.1 to 5 μm thick were also studied. In-plane electrical conductances of the Al/Ti multilayers were also measured.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lambropoulos, J.C., Jolly, M.R., Amsden, C.A., Gilman, S.E., Sinicropi, M.J., Diakomiihalis, D., and Jacobs, S.D., J. Appl. Phys. 66, 4230 (1989).CrossRefGoogle Scholar
2.Griffin, A.J. Jr, Brotzen, F.R., and Loos, P.J., J. Appl. Phys. 75, 376 (1994).CrossRefGoogle Scholar
3.Griffin, A.J. Jr, Brotzen, F.R., and Loos, P.J., J. Appl. Phys. 76, 450 (1994).CrossRefGoogle Scholar
4.Lee, S.M. and Cahill, D.G., J. Appl. Phys. 81, 2590 (1997).CrossRefGoogle Scholar
5.Swartz, E.T. and Pohl, R.O., Rev. Mod. Phys. 61, 605 (1989).CrossRefGoogle Scholar
6.Cahill, D.G., Microscale Thermophys. Eng. 1, 85 (1997).CrossRefGoogle Scholar
7.Josell, D., Cezairliyan, A., van Heerden, D., and Murray, B.T., Int. J. Thermophys. 18, 865 (1997).CrossRefGoogle Scholar
8.Clemens, B.M., Eesley, G.L., and Paddock, C.A., Phys. Rev. B 37, 1085 (1988).CrossRefGoogle Scholar
9.Wu, Z.L., Wei, L., and Kuo, P.K., SPIE 1848, 361 (1992).Google Scholar
10.Josell, D., Cezairliyan, A., and Bonevich, J.E., Int. J. Thermophys. 19, 525 (1998).CrossRefGoogle Scholar
11.Lee, S-M., Matamis, G., Cahill, D.G., and Allen, W.P., Microscale Thermophys. Eng. 3, 31 (1998).Google Scholar
12.An, K., Ravichandran, K.S., Dutton, R.E., and Semiatin, S.L., J. Am. Ceram. Soc. 82, 399 (1999).CrossRefGoogle Scholar
13.Yao, T., Appl. Phys. Lett. 51, 1798 (1987).CrossRefGoogle Scholar
14.Zhang, Z.C., Roger, J.P., Fournier, D., Boccara, A.C., and Wang, J.C., Thin Solid Films 186, 361 (1990).CrossRefGoogle Scholar
15.Yu, X.Y., Chen, G., Verma, A., and Smith, J.S., Appl. Phys. Lett. 67, 3554 (1995).CrossRefGoogle Scholar
16.Lee, S-M., Cahill, D.G., and Venkatasubramanian, R., Appl. Phys. Lett. 70, 2957 (1997).CrossRefGoogle Scholar
17.Chen, G., Tien, C.L., Wu, X., and Smith, J.S., J. Heat Transfer 116, 325 (1994).CrossRefGoogle Scholar
18.Capinski, W.S., Maris, H.J., Ruf, T., Cardona, M., Ploog, K., and Katzer, D.S., Phys. Rev. B 59, 8105 (1999).CrossRefGoogle Scholar
19.Stoner, R.J. and Maris, H.J., Phys. Rev. B 48, 16373 (1993).CrossRefGoogle Scholar
20.Chen, G., J. Heat Transfer 119, 220 (1997).CrossRefGoogle Scholar
21.Chen, G. and Neagu, M., Appl. Phys. Lett. 71, 2761 (1997).CrossRefGoogle Scholar
22.Kuo, P.K., Sendler, E.D., Farvo, L.D., and Thomas, R.L., Can. J. Phys. 64, 1168 (1986).CrossRefGoogle Scholar
23.Wei, L., Ph.D. Dissertation, Wayne State University, Detroit, MI (1992).Google Scholar
24.Wei, L., Vaudin, M., Hwang, C.S., and White, G., J. Mater. Res. 10, 1889 (1995).CrossRefGoogle Scholar
25.Josell, D., Gonzalez, E.J., and White, G.S., J. Mater. Res. 13, 1117 (1998).CrossRefGoogle Scholar
26.Gonzalez, E.J., White, G., and Wei, L., J. Mater. Res. 15, 744 (2000).CrossRefGoogle Scholar
27.Gonzalez, E.J., Hockey, B., and Ritter, J.J. (private communication).Google Scholar
28.Touloukian, Y.S., Powell, R.W., Ho, C.Y., and Nicolaou, M.C., Thermophysical Properties of Matter (Plenum Publishing, New York, 1973), Vol. 10.Google Scholar
29.Touloukian, Y.S. and Buyco, E.H., Thermophysical Properties of Matter (Plenum Publishing, New York, 1970), Vol. 5.Google Scholar
30.Bonevich, J., van Heerden, D., and Josell, D., J. Mater. Res. 14, 1977 (1999).CrossRefGoogle Scholar
31.Valdes, L.B., Proc. IRE 42, 420 (1954).CrossRefGoogle Scholar
32.Cahn, J.W., in Interfacial Segregation, edited by Johnson, W.C. and Blakely, J.M. (ASM Seminar, Materials Park, OH, 1978), pp. 323.Google Scholar
33.Lee, S-M. and Cahill, D.G., Microscale Thermophys. Eng. 1, 47 (1997).Google Scholar