Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-24T13:04:24.687Z Has data issue: false hasContentIssue false

Thermal stability of a nanostructured layer on the surface of 316L stainless steel

Published online by Cambridge University Press:  17 February 2014

Pengfei Chui*
Affiliation:
School of Materials Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi 723003, China
Kangning Sun
Affiliation:
Key Laboratory for Liquid-Solid Structure Evolution and Processing of Materials (Ministry of Education), Shandong University, Jinan 250061, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

To obtain a nanocrystalline surface layer, 316L stainless steel was treated by fast multiple rotation rolling (FMRR). The microstructure, after FMRR treatment and annealing treatment, was characterized by transmission electron microscopy and x-ray diffraction. Equiaxed nanocrystalline with the average grain size about 12 nm is obtained on the surface layer of FMRR sample. The investigation of thermal stability of the nanocrystalline layer indicates that the grains are still nanocrystalline and the average grain size is about 60 nm for annealing at 500 °C. In addition, the amount of α-martensite increases markedly as the annealing temperature increases from 300 to 500 °C. However, it begins to reduce at 600 °C due to the reversion transformation from martensite to austenite. After annealing at 400 °C, the microhardness of the annealed FMRR sample reaches a maximum value of about 660 HV, and it is four times higher than that of the original sample.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lacombe, P., Baroux, B., and Beranger, G.: les aciers inoxydables, les editions de physiques (les Ulis cedex A, France, 1990), p. 663.Google Scholar
Hall, E.O.: The deformation and ageing of mild steel: Ⅲ. Discussion of results. Proc. Phys. Soc. London, Sect. B 64, 747753 (1951).Google Scholar
Petch, N.J.: The cleavage strength of polycrystals. J. Iron Steel Inst. 174, 2528 (1953).Google Scholar
Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103189 (2000).Google Scholar
Valiev, R.Z., Korznikov, A.V., and Mulyukov, R.R.: Structure and properties of ultrafine-grained materials produced by severe plastic deformation. Mater. Sci. Eng., A 168, 141148 (1993).Google Scholar
Song, K.H., Kim, H.S., and Kim, W.Y.: Improvement of mechanical properties in severely plastically deformed Ni–Cr alloy. Mater. Des. 35, 685690 (2012).Google Scholar
Radiguet, B., Etienne, A., Pareige, P., Sauvage, X., and Valiev, R.: Irradiation behavior of nanostructured 316 austenitic stainless steel. J. Mater. Sci. 43, 73387343 (2008).Google Scholar
Mine, Y., Horita, Z., and Murakami, Y.: Effect of hydrogen on martensite formation in austenitic stainless steels in high-pressure torsion. Acta Mater. 57, 2993–2002 (2009).Google Scholar
Čížek, J., Procházka, I., Melikhova, O., Brauer, G., Anwand, W., Kužel, R., Cieslar, M., and Lslamgaliev, R.K.: Investigation of spatial distribution of defects in ultra-fine grained copper. Appl. Surf. Sci. 194, 140144 (2002).Google Scholar
Todaka, Y., Umemoto, M., Yin, J., Liu, Z.G., and Tsuchiya, K.: Role of strain gradient on grain refinement by severe plastic deformation. Mater. Sci. Eng., A 462, 264268 (2007).Google Scholar
Valiev, R.Z., Sergueeva, A.V., and Mukherjee, A.K.: The effect of annealing on tensile deformation behavior of nanostructured SPD titanium. Scr. Mater. 49, 669674 (2003).Google Scholar
Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., and Zhu, Y.T.: Corrosion resistance of ultra fine-grained Ti. Scr. Mater. 51, 225229 (2004).Google Scholar
Zhu, Y.T., Huang, J.Y., Gubicza, J., Ungár, T., Wang, Y.M., Ma, E., and Valiev, R.Z.: Nanostructures in Ti processed by severe plastic deformation. J. Mater. Res. 18, 19081917 (2003).Google Scholar
Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valiev, R.Z.: Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater. Sci. Eng., A 343, 4350 (2003).Google Scholar
Stolyarov, V.V., Zhu, Y.T., Lowe, T.C., and Valiev, R.Z.: Microstructure and properties of pure Ti processed by ECAP and cold extrusion. Mater. Sci. Eng., A 303, 8289 (2001).Google Scholar
Ueno, H., Kakihata, K., Kaneko, Y., Hashimoto, S., and Vinogradov, A.: Enhanced fatigue properties of nanostructured austenitic SUS 316L stainless steel. Acta Mater. 59, 70607069 (2011).Google Scholar
Oh-ishia, K., Horita, Z.J., Smith, D.J., and Langdon, T.G.: Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing. J. Mater. Res. 16, 583589 (2001).Google Scholar
Du, X.N., Yin, S.M., Liu, S.C., Wang, B.Q., and Guo, J.D.: Effect of the electropulsing on mechanical properties and microstructure of an ECAPed AZ31 Mg alloy. J. Mater. Res. 23, 15701577 (2008).Google Scholar
Kim, H.S.: Evaluation of strain rate during equal-channel angular pressing. J. Mater. Res. 17, 172179 (2002).Google Scholar
Li, Y., Wang, L., Zhang, D.D., and Shen, L.: The effect of surface nanocrystallization on plasma nitriding behaviour of AISI 4140 steel. Appl. Surf. Sci. 257, 979984 (2010).Google Scholar
Mai, Y.J., Jie, X.H., Liu, L.L., Yu, N., and Zheng, X.X.: Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization. Appl. Surf. Sci. 256, 19721975 (2010).Google Scholar
Li, D., Chen, H.N., and Xu, H.: The effect of nanostructured surface layer on the fatigue behaviors of a carbon steel. Appl. Surf. Sci. 255, 38113816 (2009).Google Scholar
Wang, Z.B., Lu, J., and Lu, K.: Investigations on composition and morphology of electrochemical conversion layer/titanium dioxide deposit on stainless steel. Surf. Coat. Technol. 201, 27962801 (2006).Google Scholar
Chui, P.F., Sun, K.N., Sun, C., Yang, X.Q., and Shan, T.: Effect of surface nanocrystallization induced by fast multiple rotation rolling on hardness and corrosion behavior of 316L stainless steel. Appl. Surf. Sci. 257, 67876791 (2011).Google Scholar
Chen, X.H., Lu, J., Lu, L., and Lu, K.: Tensile properties of a nanocrystalline 316L austenitic stainless steel. Scr. Mater. 52, 10391044 (2005).Google Scholar
Tong, W.P., Han, Z., Wang, L.M., Lu, J., and Lu, K.: Low-temperature nitriding of 38CrMoAl steel with a nanostructured surface layer induced by surface mechanical attrition treatment. Surf. Coat. Technol. 202, 49574963 (2008).Google Scholar
Tsakiris, V. and Edmonds, D.V.: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng., A 273275, 430436 (1999).Google Scholar
Peyre, P., Scherpereel, X., Berthe, L., Carboni, C., Fabbro, R., Beranger, G., and Lemaitre, C.: Surface modifications induced in 316L steel by laser peening and shot-peening. Influence on pitting corrosion resistance. Mater. Sci. Eng., A 280, 294302 (2000).Google Scholar
Rajanna, K., Pathiraj, B., and Kolster, B.H.: X-ray fractography studies on austenitic stainless steels. Eng. Fract. Mech. 54, 155166 (1996).Google Scholar
Fultz, B. and Howe, J.M.: Transmission Electron Microscopy and Diffractometry of Materials, 2nd ed. (Springer, Berlin, Germany, 2002).Google Scholar
Klug, H.P. and Alexander, L.E.: X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd ed. (Wiley, New York, 1974), p. 661.Google Scholar
Wang, T.S., Yu, J.K., and Dong, B.F.: Surface nanocrystallization induced by shot peening and its effect on corrosion resistance of 1Cr18Ni9Ti stainless steel. Surf. Coat. Technol. 200, 47774781 (2006).Google Scholar
Roland, T., Retraint, D., Lu, K., and Lu, J.: Enhanced mechanical behavior of a nanocrystallised stainless steel and its thermal stability. Mater. Sci. Eng., A 445446, 281288 (2007).Google Scholar
Etienne, A., Radiguet, B., Genevois, C., Le Breton, J-M., Valiev, R., and Pareige, P.: Thermal stability of ultrafine-grained austenitic stainless steels. Mater. Sci. Eng., A 527, 58055810 (2010).Google Scholar
Zhang, Y., Jing, X.T., Lou, B.Z., Shen, F.S., and Cui, F.Z.: Mechanism and reversible behavior of the α′ → γ transformation in 1Cr18Ni9Ti stainless steel. J. Mater. Sci. 34, 32913296 (1999).Google Scholar
Di Schino, A., Salvatori, I., and Kenny, J.M.: Effects of martensite formation and austenite reversion on grain refining of AISI 304 stainless steel. J. Mater. Sci. 37, 45614565 (2002).Google Scholar