Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T04:08:02.133Z Has data issue: false hasContentIssue false

Thermal stability and corrosion resistance of nanocrystallized zirconium formed by surface mechanical attrition treatment

Published online by Cambridge University Press:  31 January 2011

Yong Han*
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Lan Zhang
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
Jian Lu
Affiliation:
Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Kom, Kowloon, Hong Kong, China
Wengting Zhang
Affiliation:
State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China
*
a) Address all correspondence to this author: e-mail: [email protected]
Get access

Abstract

The thermal stability and corrosion behavior of the nanostructured layer on commercially pure zirconium, produced by surface mechanical attrition treatment (SMAT), were investigated. It is indicated that the nanograined Zr is stable at annealing temperatures up to 650 °C, above which significant grain growth occurs and the grain size shows parabolic relationship with annealing time. The activation energy for grain growth of the nanograined Zr is 59 kJ/mol at 750–850 °C, and the grain growth is dominated by grain-boundary diffusion. The as-SMATed nanograined Zr exhibits higher corrosion resistance than the 550–750 °C annealed SMATed Zr and the unSMATed coarse-grained Zr. It is indicated that the corrosion resistance of Zr tends to increase with the reduction of grain size, which is related to the dilution of segregated impurities at grain boundaries due to grain refinement and the formation of passive protection film.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H.: Nanostructured materials: Basic concepts and microstructure. Acta Mater. 48, 1 (2000).CrossRefGoogle Scholar
2.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V.: Bulk nanostructured materials from severe plastic deformation. Prog. Mater. Sci. 45, 103 (2000).CrossRefGoogle Scholar
3.Tong, S.C. and Chen, H.: Nanocrystalline materials and coatings. Mater. Sci. Eng., R 45, 1 (2004).CrossRefGoogle Scholar
4.Witkin, D.B. and Lavernia, E.J.: Synthesis and mechanical behavior of nanostructured materials via cryomilling. Prog. Mater. Sci.51, 1 (2006).CrossRefGoogle Scholar
5.Saldana, L., A. Méndez-Vilasc, Jiang, L., Multignerd, M., González-Carrasco, J.L., Pérez-Prado, M.T., González-Martín, M.L., Munuera, L., and Vilaboa, N.: In vitro biocompatibility of an ultrafine grained zirconium. Biomaterials 28, 4343 (2007).CrossRefGoogle ScholarPubMed
6.Islamgaliev, R.K., Chmelik, F., and Kuzel, R.: Thermal stability of submicron grained copper and nickel. Mater. Sci. Eng., A 237, 43 (1997).CrossRefGoogle Scholar
7.Stolyaro, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C., and Valie, R.Z.: Grain refinement and properties of pure Ti processed by warm ECAP and cold rolling. Mater. Sci. Eng., A 343, 43 (2003).CrossRefGoogle Scholar
8.Wadsack, R., Pippan, R., and Schedler, B.: Structural refinement of chromium by severe plastic deformation. Fusion Eng. Des. 66, 265 (2003).CrossRefGoogle Scholar
9.Sun, F., Zuniga, A., Rojas, P., and Lavernia, E.J.: Thermal stability and recrystallization of nanocrystalline Ti produced by cryogenic milling. Metall. Mater. Trans. 37, 2069 (2006).CrossRefGoogle Scholar
10.Lewandowska, M. and Kurzydyowski, K.J.: Thermal stability of a nanostructured aluminium alloy. Mater. Charact. 55, 395 (2005).CrossRefGoogle Scholar
11.Shankar, M.R., Rao, B.C., Chandrasekar, S., Compton, W.D., and King, A.H.: Thermally stable nanostructured materials from severe plastic deformation of precipitation-treatable Ni-based alloys. Scr. Mater. 58, 675 (2008).CrossRefGoogle Scholar
12.Li, S.J., Zhang, Y.W., Sun, B.B., Hao, Y.L., and Yang, R.T.: Thermal stability and mechanical properties of nanostructured Ti–24Nb–4Zr–7.9Sn alloy. Mater. Sci. Eng., A 480, 101 (2008).CrossRefGoogle Scholar
13.Vinogradov, A., Mimaki, T., Hashimoto, S., and Valiev, R.Z.: On the corrosion behavior of ultra-fine grain copper. Scr. Mater. 41, 319 (1999).CrossRefGoogle Scholar
14.Miyamoto, H., Harada, K., Mimaki, T., Vinogradov, A., and Hashimoto, S.: Corrosion of ultra-fine grained copper fabricated by equal-channel angular pressing. Corros. Sci. 50, 1215 (2008).CrossRefGoogle Scholar
15.Barbucci, A., Farnen, G., Matteazzi, P., and Riccieri, R.: Corrosion behavior of nanocrystalline Cu90Ni10 alloy in neutral solution containing chlorides. Corros. Sci. 41, 463 (1999).CrossRefGoogle Scholar
16.Balyanov, A., Kutnyakova, J., Amirkhanova, N.A., Stolyarov, V.V., Valiev, R.Z., Liao, X.Z., Zhao, Y.H., Jiang, Y.B., Xu, H.F., Lowe, T.C., and Zhu, Y.T.: Corrosion resistance of ultra finegrained Ti. Scr. Mater. 51, 225 (2004).CrossRefGoogle Scholar
17.Garbacz, H., Pisarek, M., and Kurzydłowski, K.J.: Corrosion resistance of nanostructured titanium. Biomol. Eng. 24, 559 (2007).CrossRefGoogle ScholarPubMed
18.Wei, W., Wei, K.X., and Du, Q.B.: Corrosion and tensile behaviors of ultra-fine grained Al–Mn alloy produced by accumulative roll bonding. Mater. Sci. Eng., A 454455, 536 (2007).Google Scholar
19.Mordyuk, B.N., Prokopenko, G.I., Vasylyev, M.A., and Iefimov, M.O.: Effect of structure evolution induced by ultrasonic peening on the corrosion behavior of AISI-321 stainless steel. Mater. Sci. Eng., A 458, 253 (2007).CrossRefGoogle Scholar
20.Aghion, E. and Amir, A.: Mechanical properties and environmental behavior of a magnesium alloy with a nano-/sub-micron structure. Adv. Eng. Mater. 9, 747 (2007).CrossRefGoogle Scholar
21.Baldev, R. and Kamachi, M.U.: Materials development and corrosion problems in nuclear fuel reprocessing plants. Prog. Nucl. Energy 48, 283 (2006).Google Scholar
22.Zhang, L., Han, Y., and Lu, J.: Nanocrystallization of zirconium subjected to surface mechanical attrition treatment. Nanotechnology 19, 571 (2008).Google ScholarPubMed
23.Zhang, X.Y., Shi, M.H., Li, C., Liu, N.F., and Wei, Y.M.: The influence of grain size on the corrosion resistance of nanocrystalline zirconium metal. Mater. Sci. Eng., A 448, 259 (2007).CrossRefGoogle Scholar
24.Zhu, K.Y., Vassel, A., Brisset, F., Lu, K., and Lu, J.: Nanostructure formation mechanism of α-titanium using SMAT. Acta Mater.52, 4101 (2004).CrossRefGoogle Scholar
25.Wu, X., Tao, N., Hong, Y., Xu, B., Lu, J., and Lu, K.: Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP. Acta Mater. 50, 2075 (2002).CrossRefGoogle Scholar
26.Nieh, T.G.: Hall-petch relation in nanocrystalline solids. Scr. Mater. 25, 955 (1991).CrossRefGoogle Scholar
27.Bouffioux, P., and Legras, L.: Effect of hydriding on the residual cold work recovery and creep of Zircaloy-4 cladding tubes, in Proceedings of the International Tropical Meeting on Light Water Reactor Fuel Performance (Park City, UT, April 1013, 2000).Google Scholar
28.Jones, D.A.: Principals and Prevention of Corrosion (Prentice-Hall, Inc., Upper Saddle River, NJ, 1992).Google Scholar
29.Humphreys, F.J. and Hatherly, M.: Recrystallization and Related Annealing Phenomena (Pergamon, Oxford, 1996).Google Scholar
30.Hayes, T.A., Kassner, M.E., Amick, D., and Rosen, R.: The thermal stability of surface deformed zirconium. J. Nucl. Mater. 246, 60 (1997).CrossRefGoogle Scholar
31.Jin, M., Minor, A.M., Stach, E.A., and Morris, J.W.: Direct observation of deformation-induced grain growth during the nanoindentation of ultrafine-grained Al at room temperature. Acta Mater. 52, 5381 (2004).CrossRefGoogle Scholar
32.Haslam, A.J., Moldovan, D., Yamakov, V., Wolf, D., Phillpot, S.R., and Gleiter, H.: Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51, 2097 (2003).CrossRefGoogle Scholar
33.Atkinson, H.V.: Overview no. 65: Theories of normal grain growth in pure single phase systems. Acta Metall. 36, 469 (1988).CrossRefGoogle Scholar
34.Vandermeer, R.A. and Hsun, H.: On the grain growth exponent of pure iron. Acta Metall. 42, 3071 (1994).CrossRefGoogle Scholar
35.Anderson, M.P., Srolovitz, D.J., Grest, G.S., and Sahni, P.S.: Computer simulation of grain growth—I. Kinetics. Acta Metall. 32, 783 (1984).CrossRefGoogle Scholar
36.Povolo, F. and Capitani, J.C.: Influence of temperature and stressrelieving treatment of the stress relaxation in bending of zircaloy-4 near 673 K. J. Mater. Sci. 19, 2969 (1984).CrossRefGoogle Scholar
37.Hayes, T.A., Kassner, M.E., and Rosen, R.S.: Steady-state creep of α-zirconium at temperatures up to 850°C. Metall. Mater. Trans. A 33, 337 (2002).CrossRefGoogle Scholar
38.Vieregge, K. and Herzig, C.: Grain-boundary diffusion in αzirconium: Part I: Self-diffusion. J. Nucl. Mater. 173, 118 (1990).CrossRefGoogle Scholar
39.Lian, J.S., Valifv, R.Z., and Baudelet, B.: On the enhanced grain growth in ultrafine grained metals. Acta Metall. Mater. 43, 4165 (1995).CrossRefGoogle Scholar
40.Valiev, R.Z., Kozlov, E.V., Ivanov, Y.F., Lian, J.S., Nazarov, A.A., and Baudlelet, B.: Deformation behavior of ultra-fine-grained copper. Acta Metall. Mater. 42, 2467 (1994).CrossRefGoogle Scholar
41.Wang, J., Iwahashi, Y., Horita, Z., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G.: An investigation of microstructural stability in an Al–Mg alloy with submicrometer grain size. Acta Mater. 44, 2973 (1996).CrossRefGoogle Scholar
42.Yevtushenko, O., Natter, H., and Hempelmann, R.: Grain-growth kinetics of nanostructured gold. Thin Solid Films 515, 353 (2006).CrossRefGoogle Scholar
43.Miyamoto, H., Yoshimura, K., Mimaki, T., and Yamashita, A.: Behavior of intergranular corrosion of T011Y tilt grain boundaries of pure copper bicrystals. Corros. Sci. 44, 1835 (2002).CrossRefGoogle Scholar
44.Palumbo, G. and Erb, U.: Enhancing the operating life and performance of lead-acid batteries via grain-boundary engineering. MRS Bull. 24, 27 (1999).CrossRefGoogle Scholar
45.Hu, M.P.: Electrochemical Corrosion (Metallurgical Industry Publishing Company, Beijing, 1991).Google Scholar
46.Pourbaix, M.: Atlas of Electrochemical Equilibria in Aqueous Solutions (National Association of Corrosion Engineers, Houston, TX, 1974), p. 223.Google Scholar
47.Beaunier, L.: Corrosion of grain boundaries: Initiation process and testing. J. Phys. C 43, 6 (1982).Google Scholar
48.Beaunier, L., Froment, M., and Vignaud, C.: A kinetical model for the electrochemical grooving of grain boundaries. Electrochim. Acta 25, 1239 (1980).CrossRefGoogle Scholar
49.Erb, U., Gleiter, H., and Schwitzgebel, G.: The effect of boundary structure (energy) on interfacial corrosion. Acta Metall. 30, 1377 (1982).CrossRefGoogle Scholar
50.Peng, D.Q., Bai, X.D., Chen, X.W., Zhou, Q.G., Liu, X.Y., and Deng, P.Y.: Comparison of aqueous corrosion behavior of zirconium and zircaloy-4 implanted with molybdenum. Nucl. Instrum. Methods Phys. Res., Sect. B 211, 55 (2003).CrossRefGoogle Scholar
51.Movchan, B.A. and Demchishin, A.V.: Investigations of the structure and properties of thick Ni, Ti, W, Al2O3 and ZrO2 vacuum condensates. Fiz. Met. Metalloved. 4, 28 (1969).Google Scholar
52.Johansen, H.A., Adams, G.B., and Rysselberghe, P.V.: Anodic oxidation of aluminum, chromium, hafnium, niobium, tantalum, titanium, vanadium, and zirconium at very low current densities. J. Electrochem. Soc. 104, 339 (1957).CrossRefGoogle Scholar
53.Tao, S. and Li, D.Y.: Investigation of corrosion–wear synergistic attack on nanocrystalline Cu deposits. Wear 263, 363 (2007).CrossRefGoogle Scholar
54.Tao, S. and Li, D.Y.: Tribological, mechanical and electrochemical properties of nanocrystalline copper deposits produced by pulse electrodeposition. Nanotechnology 17, 65 (2006).CrossRefGoogle Scholar