Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-29T15:15:23.514Z Has data issue: false hasContentIssue false

Thermal shock-induced fracture of ion-implanted LiF crystals

Published online by Cambridge University Press:  31 January 2011

V. N. Gurarie
Affiliation:
School of Science and Mathematics Education, University of Melbourne, Institute of Education, Parkville, VIC, 3052, Australia
J. S. Williams
Affiliation:
Microelectronics and Materials Technology Centre, RMIT, Melbourne 3001, and Department of Electronic Materials, Engineering Research School of Physical Sciences, ANU, Canberra 2600, Australia
Get access

Abstract

Monocrystals of LiF, ion implanted with Ar+, were exposed to thermal shock in a plasma of different intensities. Ion implantation substantially alters the fracture pattern and characteristics of the material, particularly in reducing the thermal shock resistance parameter, S′, and in increasing the damage resistance parameter, S″. The former parameter indicates that ion implantation allows fracture to be initiated at lower thermal shock temperature differences and the latter parameter is associated with higher crack densities and lower crack penetration depths. The increase in the parameter S″ indicates that ion implantation can result in a higher mechanical stability and greater durability of the crystals damaged by thermal shock. Surface melting at very high heat fluxes eliminates any effect of ion implantation.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Finkel, V., Gurarie, V., and Alushina, N., Dok. Akad. Nauk SSSR 7 (3) (1969).Google Scholar
2Clarke, F., Sambell, R., and Miles, J., Trans. Br. Ceramic Society 60, 299 (1961).Google Scholar
3Dugdale, R., Maskrey, I., and McVickers, R., Trans. Br. Ceramic Society 60, 427 (1961).Google Scholar
4Miles, G. D. and Clarke, F. J. P., Phil. Mag. 6, 1449 (1961).CrossRefGoogle Scholar
5Manson, S. S., Thermal Stress and Low-Cycle Fatigue (McGraw-Hill Co., New York, 1974).Google Scholar
6Gurarie, V. and Finkel, V., Strength of Materials 5, 9, 10371041 (1973).CrossRefGoogle Scholar
7Melan, E. and Parkus, H., Warmespannungen Infolge Statonarer Temperaturfelder (Wein, Springer-Verlag, 1953).Google Scholar
8Hasselman, D. H., J. Am. Ceram. Soc. 46, 11, 535540 (1963).CrossRefGoogle Scholar
9Gurarie, V., Metals Forum 7, 1, 1221 (1984).Google Scholar
10Andersen, H. H., in Ion Implantation and Beam Processing, edited by Williams, J. S. and Poate, J. M. (Academic Press, Sydney, 1989).Google Scholar
11Ziegler, J. F., Biersack, J. P., and Littmark, U., in The Stopping and Range of Ions in Matter, edited by Ziegler, J. F. (Pergamon, New York, 1985).CrossRefGoogle Scholar
12Carslaw, H. and Jaeger, J., Conduction of Heat in Solids (Oxford, 1959), 2nd ed., p. 148.Google Scholar
13Lovell, M. C., Avery, A. J., and Vernon, M.W., Physical Properties of Materials (Van Nostrand Reinhold Co., New York, 1977), p. 230.Google Scholar
14Gilman, J. J. andJohnston, W. G., Dislocations and the Mechanical Properties of Crystals (Wiley, New York, 1957).Google Scholar
15Vorobiev, A. A., Mechanitcheskii i Teplovii Svoistva Stchelotchnogaloidnich Kristallov (Uzd. Visshaya Shkola, Moscow, 1968).Google Scholar
16Handbook of Chemistry and Physics (Chemical Rubber Publishing Co., Cleveland, OH), 39th ed.Google Scholar
17EerNisse, E. P., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B. L. (Plenum Press, New York, 1973), p. 531.Google Scholar
18McHargue, C., Nucl. Instrum. Methods 19/20, 809 (1987).CrossRefGoogle Scholar