Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-05T12:05:14.634Z Has data issue: false hasContentIssue false

Thermal expansion of bulk amorphous Zr41.2Ti13.8Cu12.5Ni10Be22.5 alloy

Published online by Cambridge University Press:  31 January 2011

Y. He
Affiliation:
Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
R. B. Schwarz
Affiliation:
Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
D. G. Mandrus
Affiliation:
Center for Materials Science, MS K-765, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

The linear thermal expansion of the bulk amorphous Zr4.12Ti13.8Cu12 5Ni10Be22.5 (atomic percent) alloy has been measured from 80 K to 773 K. The data for T, Tg were fitted by a model based on the Grüneisen relation and a Debye expression for the heat capacity. From the fit, we deduced the Grüneisen parameter, g = 1.25, and the Debye temperature, QD = 400 K. Annealing the amorphous alloy at 663 K, which is between the glass transition temperature Tg = 623 K and the crystallization temperature Tx = 693 K, causes viscous flow in the sample. This is due to the small viscosity in the undercooled liquid.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Smith, C. H., in Rapidly Solidified Alloys, edited by Liebermann, H. H. (Marcel Dekker, Inc., New York, 1993), p. 617.Google Scholar
2.Drehman, A. J., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 41, 716 (1982).CrossRefGoogle Scholar
3.Kui, H. W., Greer, A. L., and Turnbull, D., Appl. Phys. Lett. 45, 615 (1984).CrossRefGoogle Scholar
4.Drehman, A. J. and Greer, A. L., Acta Metall. 32, 323 (1984).CrossRefGoogle Scholar
5.Chen, H. S., Acta Metall. 22, 1505 (1974).CrossRefGoogle Scholar
6.Steinberg, J., Lord, A. E. Jr., Lacy, L. L., and Johnson, J., Appl. Phys. Lett. 38, 135 (1981).CrossRefGoogle Scholar
7.Lee, M. C., Kendall, J. M., and Johnson, W. L., Appl. Phys. Lett. 40, 382 (1982).CrossRefGoogle Scholar
8.Inoue, A., Nakamura, T., Sugita, T., Zhang, T., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 34, 351 (1993).Google Scholar
9.Inoue, A., Kato, A., Zhang, T., Kim, S. G., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 32, 609 (1991).Google Scholar
10.Inoue, A., Nakamura, T., Nishiyama, N., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 33, 937 (1992).Google Scholar
11.Zhang, T., Inoue, A., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 32, 1005 (1991).Google Scholar
12.Inoue, A., Zhang, T., Nishiyama, N., Ohba, K., and Masumoto, T., Mater. Trans. Jpn. Inst. Metals 34, 1234 (1993).Google Scholar
13.Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).CrossRefGoogle Scholar
14.Turnbull, D., Contemp. Phys. 10, 473 (1969).CrossRefGoogle Scholar
15.Schwarz, R. B., Los Alamos National Laboratory, unpublished results (1994).Google Scholar
16.Kim, Y. J., Busch, R., Johnson, W. L., Rulison, A. J., and Rhim, W. K., Appl. Phys. Lett. 65, 2136 (1994).CrossRefGoogle Scholar
17.Cohen, M. H. and Turnbull, D., J. Chem. Phys. 31, 1164 (1959).CrossRefGoogle Scholar
18.Turnbull, D. and Cohen, M. H., J. Chem. Phys. 34, 120 (1961).CrossRefGoogle Scholar
19.Turnbull, D. and Cohen, M. H., J. Chem. Phys. 52, 3088 (1970).CrossRefGoogle Scholar
20.Ashcroft, N. W. and Mermin, N. D., Solid State Physics (Saunders College Publishing, Fort Worth, TX, 1976).Google Scholar
21.White, G. K., Contemp. Phys. 34, 193 (1993).CrossRefGoogle Scholar
22.Chen, H. S., Krause, J. T., and Sigety, E. A., J. Non-Cryst. Solids 13, 321 (1973/1974).CrossRefGoogle Scholar
23.Chen, H. S., J. Appl. Phys. 49, 3289 (1978).CrossRefGoogle Scholar
24.He, Y. and Schwarz, R. B., unpublished results, Los Alamos National Laboratory (1995).Google Scholar
25.Schreiber, E., Anderson, O. L., and Soga, N., Elastic Constants and Their Measurement (McGraw-Hill, Inc., New York, 1973), p. 144.Google Scholar
26.Kittel, C., Introduction to Solid State Physics, 5th ed. (John Wiley / Sons, Inc., New York, 1976), Chap. 6.Google Scholar
27.Touloukian, Y. S., Kirby, R. K., Taylor, R. E., and Desai, P. D., Thermophysical Properties of Matter, Vol. 12: Thermal Expansion: Metallic Elements and Alloys (IFI/Plenum, New York, 1975).Google Scholar
28.Busch, R., Schneider, S., Peker, A., and Johnson, W. L., Appl. Phys. Lett. 67, 1544 (1995).CrossRefGoogle Scholar
29.Johnson, W. L., private communication (1995).Google Scholar
30.Bakke, E., Busch, R., and Johnson, W. L., Appl. Phys. Lett. 67, 3260 (1995).CrossRefGoogle Scholar