Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T22:11:27.822Z Has data issue: false hasContentIssue false

Thermal effects of scanning speed and constitutional supercooling during zone-melting recrystallization of silicon-on-insulator structures

Published online by Cambridge University Press:  29 June 2016

Sharon M. Yoon
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
Ioannis N. Miaoulis
Affiliation:
Thermal Analysis of Materials Processing Laboratory, Mechanical Engineering Department, Tufts University, Medford, Massachusetts 02155
Get access

Abstract

The effects of scanning speed and constitutional supercooling during zone-melting recrystallization (ZMR) of silicon-on-insulator (SOI) structures were studied numerically. Effects of strip motion and constitutional supercooling on the temperature profiles and the size and structure of the molten region were investigated. The temperature distribution and melt zone width does not alter for processing speeds lower than 400 μm/s. For higher speeds, motion causes the temperature profiles to lag behind the strip. The size of the molten zone decreases for increasing scanning speeds and increases for increasing degrees of supercooling. The combined effects of strip motion and supercooling on the size of the molten zone were determined. Supercooling reduced the size of the solidification region where liquid and solid phase silicon coexist.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Miaoulis, I. N., in International Conference on Recrystallization in Metallic Materials (Recrystallization '90), edited by Chandra, T. (The Minerals, Metals, and Materials Society, Warrendale, PA, 1990), p. 705.Google Scholar
2.Geis, M.W., Chen, C.K., Smith, Henry I., Nitishin, P.M., Tsaur, B-Y., and Mountain, R. W., in Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M. W., and Pfeiffer, L. (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, PA, 1986), p. 39.Google Scholar
3.Im, J. S., Thompson, C. V., and Tomita, H., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J.S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 555.Google Scholar
4.Pfeiffer, L., Gelman, A. E., Jackson, K. A., West, K. W., and Batstone, J. L., Appl. Phys. Lett. 51, 1256 (1987).CrossRefGoogle Scholar
5.Pfeiffer, Loren, Gelman, A. E., Jackson, K. A., and West, K. W., in Beam-Solid Interactions and Transient Processes, edited by Thompson, M. O., Picraux, S. T., and Williams, J. S. (Mater. Res. Soc. Symp. Proc. 74, Pittsburgh, PA, 1987), p. 543.Google Scholar
6.Im, J. S., Chen, C. K., Thompson, C. V., Geis, M. W., and Tomita, H., in Silicon-on-Insulator and Buried Metals in Semiconductors, edited by Sturm, J. C., Chen, C. K., Pfeiffer, L., and Hemment, P. L. F. (Mater. Res. Soc. Symp. Proc. 107, Pittsburgh, PA, 1988), p. 169.Google Scholar
7.Im, J. S., Tomita, H., and Thompson, C. V., Appl. Phys. Lett. 51 (9), 685 (1987).Google Scholar
8.Pfeiffer, L., West, K.W., Joy, D.C., Gibson, J.M., and Gelman, A.E., in Semiconductor-on-Insulator and Thin Film Transistor Technology, edited by Chiang, A., Geis, M.W., and Pfeiffer, L. (Mater. Res. Soc. Symp. Proc. 53, Pittsburgh, PA, 1986), p. 29.Google Scholar
9.Lipman, J.D., Wong, P.Y., Miaoulis, I.N., and Im, J.S., in HTD—Collected Papers in Heat Transfer (The American Society of Mechanical Engineers, 1989), Vol. 123, pp. 211217.Google Scholar
10.Lipman, J., Miaoulis, I. N., and Im, J. S., in Beam-Solid Interactions: Physical Phenomena, edited by Knapp, J. A., Børgesen, P., and Zuhr, R.A. (Mater. Res. Soc. Symp. Proc. 157, Pittsburgh, PA, 1990), p. 473.Google Scholar
11.Miaoulis, I.N., Wong, P.Y., Lipman, J.D., and Im, J.S., J. Appl. Phys. 69 (1991).CrossRefGoogle Scholar
12.Woodruff, D. P., The Solid-Liquid Interface (Cambridge University Press, London, 1973), p. 83.Google Scholar
13.Chalmers, B., Principles of Solidification (John Wiley & Sons, Inc., New York, 1964), pp. 150157.Google Scholar
14.Mullins, W.W. and Sekerka, R.F., J. Appl. Phys. 35 (2), 444 (1964).Google Scholar
15.Knight, C. A., The Freezing of Supercooled Liquids (D. Van Nostrand Co., Toronto, 1967), p. 87.Google Scholar
16.Leamy, H.J., Chang, C.C., Baumgart, H., Lemons, R.A., and Cheng, J., Mater. Lett. 1 (1), 33 (1982).Google Scholar
17.Lee, E. H., in Energy Beam–Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C.V. (Mater. Res. Soc. Symp. Proc. 35, Pittsburgh, PA, 1985), p. 563.Google Scholar
18.Mertens, P.W., Wouters, D.J., Maes, H.E., De Veirman, A., and Van Landuyt, J., J. Appl. Phys. 63, 2660 (1988).Google Scholar
19.Fan, J.C.C., B-Y. Tsaur, and Chen, C.K., in Energy Beam–Solid Interactions and Transient Thermal Processing, edited by Fan, J. C. C. and Johnson, N. M. (Mater. Res. Soc. Symp. Proc. 23, Pittsburgh, PA, 1984), p. 477.Google Scholar
20.Dutartre, D., Haond, M., and Bensahel, D., J. Appl. Phys. 59, 632 (1986).Google Scholar
21.Gerald, Curtis F. and Wheatly, Patrick O., Applied Numerical Analysis, 4th ed. (Addison-Wesley Publishing Company Inc., Reading, MA, 1989), p. 163.Google Scholar
22.Hottel, H. C. and Sarofim, A. F., Radiative Transfer (McGraw-Hill, Inc., New York, 1967), p. 37.Google Scholar
23.Gray, W. A. and Muller, R., Engineering Calculations in Radiative Heat Transfer (Pergamon Press, New York, 1974), pp. 3536.Google Scholar
24.Geis, M. W., Chen, C. K., Smith, H. I., Mountain, R. W., and Doherty, C. L., in Energy Beam–Solid Interactions and Transient Thermal Processing, edited by Biegelsen, D. K., Rozgonyi, G. A., and Shank, C. V. (Mater. Res. Soc. Symp. Proc. 35, Pittsburgh, PA, 1985), pp. 575582.Google Scholar