Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:35:06.814Z Has data issue: false hasContentIssue false

Templated fabrication of nanostructured Ni brush for hydrogen evolution reaction

Published online by Cambridge University Press:  31 January 2011

Cheng-Yeou Wu
Affiliation:
Department of Materials Science and Engineering, National Chiao Tung University, Hsin-chu 300, Taiwan, Republic of China
Get access

Abstract

We fabricated a nanostructured brush by carrying out Ni deposition on a through-channel anodic aluminum oxide (AAO) template, followed by removal of the AAO skeleton. The AAO was prepared by a two-step anodization process resulting in pore diameter and thickness of 350 nm and 40 μm, respectively. Subsequently, the AAO underwent an electroless deposition involving sensitization, activation, and Ni plating, in conjunction with polyethylene glycol used as the inhibitor to prevent premature closing of pore opening. After deliberate control in relevant parameters, we obtained a conformal Ni overcoat along every pore channel leading to a reduced average pore diameter of 78 nm. Afterward, the sample was immersed in a KOH solution to remove the AAO structure, forming freestanding Ni tubules in a brush configuration. The nanostructured brush revealed considerable enhancement for hydrogen evolution reaction in both current-potential polarization and galvanostatic measurements, which were attributed to the increment in apparent surface area.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Shi, J.B., Chen, Y.C., Lee, C.W., Lin, Y.T., Chen, C.Optical and magnetic properties of 30 and 60 nm Ni nanowires. Mater. Lett. 62, 15 (2008)Google Scholar
2.Chen, P.L., Huang, W.J., Chang, J.K., Kuo, C.T., Pan, F.M.Fabrication and field-emission characteristics of highly ordered titanium oxide nanodot arrays. Electrochem. Solid-State Lett. 8, H83 (2005)Google Scholar
3.Kim, J.H., Ayalasomayajula, T., Gona, V., Choi, D.Fabrication and electrochemical characterization of a vertical array of MnO2 nanowires grown on silicon substrates as a cathode material for lithium rechargeable batteries. J. Power Sources 183, 366 (2008)Google Scholar
4.Yuan, J., Wang, K., Xia, X.Highly ordered platinum-nanotubule arrays for amperometric glucose sensing. Adv. Funct. Mater. 15, 803 (2005)CrossRefGoogle Scholar
5.Zhao, A.W., Ye, C.H., Meng, G.W., Zhang, L.D., Ajayan, P.M.Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition. J. Mater. Res. 18, 2318 (2003)Google Scholar
6.Zhang, J., Kielbasa, J.E., Carroll, D.L.Nanostructure of the nanopores in anodic aluminum oxide films used as template to fabricate Ag nanowires. J. Mater. Res. 24, 1735 (2009)Google Scholar
7.Yang, C.J., Chen, C., Wu, P.W., Shieh, J.M., Wang, S.M., Liang, S.W.Fabrication of ordered Ta2O5 nanodots using an anodic aluminum oxide template on Si substrate. J. Mater. Res. 22, 1064 (2007)Google Scholar
8.She, X., Song, G., Li, J., Han, P., Yang, S., Peng, Z.Preparation and characterization of polyamide 66 nanotubes and nanowires on an anodic aluminum oxide template by a physical wetting method. J. Mater. Res. 21, 1209 (2006)CrossRefGoogle Scholar
9.Thompson, G.E., Wood, G.C.Porous anodic film formation on aluminum. Nature 290, 230 (1981)Google Scholar
10.Li, A.P., Müller, F., Birner, A., Nielsch, K., Gösele, U.Polycrystalline nanopore arrays with hexagonal ordering on aluminum. J. Appl. Phys. 84, 6023 (1999)CrossRefGoogle Scholar
11.Yuan, Y., Liu, C., Zhang, Y., Shan, X.Sol-gel auto-combustion synthesis of hydroxyapatite nanotubes array in porous alumina template. Mater. Chem. Phys. 112, 275 (2008)Google Scholar
12.Kim, Y.S., Godbole, V.P., Cho, J.H., Khang, G., Shin, H.S.Plasma enhanced chemical vapor deposition of palladium in anodic aluminum oxide template. Curr. Appl. Phys. 6S1, e58 (2006)Google Scholar
13.Zhang, S.H., Xie, Z.X., Jiang, Z.Y., Xu, X., Xiang, J., Huang, R.B., Zhang, L.S.Synthesis of silver nanotubes by electroless deposition in porous anodic aluminum oxide templates. Chem. Commun. (Camb.) 1106 (2004)Google Scholar
14.Masuda, H., Satoh, M.Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys. 35, L126 (1996)CrossRefGoogle Scholar
15.Wang, W., Li, N., Li, X., Geng, W., Qiu, S.Synthesis of metallic nanotube arrays in porous aluminum oxide template through electroless deposition. Mater. Res. Bull. 41, 1417 (2006)Google Scholar
16.Guo, D., Fan, L., Sang, J., Liu, Y., Huang, S., Zou, X.Fabrication of a regular tripod Ni–P nanorod array and an AAO template with regular branched nanopores using a current-controlled branching method. Nanotechnology 18, 405304 (2007)Google Scholar
17.Andricacos, P.C., Uzoh, C., Dukovic, J.O., Horkans, J., Deligianni, H.Damascene copper electroplating for chip interconnections. IBM J. Res. Dev. 42, 567 (1998)CrossRefGoogle Scholar
18.West, A.C., Mayer, S., Reid, J.A superfilling model that predicts bump formation. Electrochem. Solid-State Lett. 4, C50 (2001)Google Scholar
19.Tsai, H.C., Chang, Y.C., Wu, P.W.Rapid galvanostatic determination on levelers for superfilling in Cu electroplating. Electrochem. Solid-State Lett. 13, D7 (2010)CrossRefGoogle Scholar
20.Kelly, J.J., West, A.C.Copper deposition in the presence of polyethylene glycol II. Electrochemical impedance spectroscopy. J. Electrochem. Soc. 145, 3477 (1998)CrossRefGoogle Scholar
21.Shervedani, R.K., Lasia, A.Studies of the hydrogen evolution reaction on Ni–P electrodes. J. Electrochem. Soc. 144, 511 (1997)CrossRefGoogle Scholar
22.Kim, D.R., Cho, K.W., Choi, Y.I., Park, C.J.Fabrication of porous Co–Ni–P catalysts by electrodeposition and their catalytic characteristics for the generation of hydrogen from an alkaline NaBH4 solution. Int. J. Hydrogen Energy 34, 2622 (2009)Google Scholar
23.Tanaka, S.I., Hirose, N., Tanaki, T.Evaluation of raney-nickel cathodes prepared with aluminum powder and titanium hydride powder. J. Electrochem. Soc. 146, 2477 (1999)CrossRefGoogle Scholar
24.Huot, J.Y., Trudeau, M.L., Schulz, R.Low hydrogen overpotential nanocrystalline Ni–Mo cathodes for alkaline water electrolysis. J. Electrochem. Soc. 138, 1316 (1991)CrossRefGoogle Scholar
25.Grigoriev, S.A., Millet, P., Fateev, V.N.Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers. J. Power Sources 177, 281 (2008)CrossRefGoogle Scholar
26.Lin, S.C., Lai, C.H., Wu, P.W.Conformal deposition of Ni–P on anodic aluminum oxide template. Electrochem. Solid-State Lett. 11, D1 (2008)CrossRefGoogle Scholar
27.Chang, S.Y., Hsu, C.J., Fang, R.H., Lin, S.J.Electrochemical deposition of nanoscaled palladium catalysts for 65 nm copper metallization. J. Electrochem. Soc. 150, C603 (2003)Google Scholar
28.Chang, S.Y., Lin, C.W., Hsu, H.H., Fang, J.H., Lin, S.J.Integrated electrochemical deposition of copper metallization for ultralarge-scale integrated circuits. J. Electrochem. Soc. 151, C81 (2004)Google Scholar
29.Cui, G.F., Li, N., Li, D.Y., Chi, M.G.Study of optimized complexing agent for low-phosphors electroless nickel plating bath. J. Electrochem. Soc. 152, C669 (2005)Google Scholar
30.Wei, Z.D., Yan, A.Z., Feng, Y.C., Li, L., Sun, C.X., Shao, Z.G., Shen, P.K.Study of hydrogen evolution reaction on Ni–P amorphous alloy in the light of experimental and quantum chemistry. Electrochem. Commun. 9, 2709 (2007)Google Scholar
31.Fundo, A.M., Abrantes, L.M.The electrocatalytic behavior of electroless Ni–P alloys. J. Electroanal. Chem. 600, 63 (2007)Google Scholar
32.Kiuchi, D., Matsushima, H., Fukunaka, Y., Kuribayashi, K.Ohmic resistance measurement of bubble froth layer in water electrolysis under microgravity. J. Electrochem. Soc. 153, E138 (2006)Google Scholar
33.Cheng, H., Scott, K., Ramshaw, C.Intensification of water electrolysis in a centrifugal field. J. Electrochem. Soc. 149, D172 (2002)Google Scholar
34.Kim, S., Koratkar, N., Karabacak, T., Lu, T.M.Water electrolysis activated by Ru nanorod array electrodes. Appl. Phys. Lett. 88, 263106 (2006)Google Scholar
35.Chen, P.C., Chang, Y.M., Wu, P.W., Chiu, Y.F.Fabrication of Ni nanowires for hydrogen evolution reaction in a neutral electrolyte. Int. J. Hydrogen Energy 34, 6596 (2009)Google Scholar