Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-24T13:16:37.276Z Has data issue: false hasContentIssue false

Templated deposition of porous fullerene-C60 in the interior of siliceous sponge spicules as a biogenic microvessel

Published online by Cambridge University Press:  28 September 2012

Arcan F. Dericioglu*
Affiliation:
Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara, Turkey; and International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan
Panče Naumov
Affiliation:
International Center for Young Scientists, National Institute for Materials Science, Tsukuba, Ibaraki 305-0044, Japan; and Department of Material and Life Science, Osaka University, Graduate School of Engineering, Suita, Osaka 565-0871, Japan
Yoshihisa Tanaka
Affiliation:
National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The unique set of mechanical properties found in rigid biological tissues, which combine high strength and stiffness with superior toughness, offer inspiration for the design of advanced functional structural materials with outstanding performance. This paper reports on the first utilization of one such biogenic material—siliceous sponge spicules, the skeletal elements of sponges (Poriphera)—as a unique naturally nanostructured template for vacuum deposition, while also reporting on the effects of the required chemical and thermal treatments for template preparation on the material’s microstructure and mechanical properties. The confined space within the central channel of spicules from the sponge Euplectella acts simultaneously as a nanotemplate and as a biogenic, optically transparent, glassy microchamber for the preparation of micrometer-sized clusters of fullerene-C60 through vacuum deposition onto the nanostructured surface. This biological material allows an unprecedented and unique microporous morphology of C60 particles to be obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Mayer, G.: Rigid biological systems as models for synthetic composites. Science 310, 1144 (2005).CrossRefGoogle ScholarPubMed
Smith, B.L., Schäffer, T.E., Vlani, M., Thompson, J.B., Frederick, N.A., Klndt, J., Belcher, A., Stuckyll, G.D., Morse, D.E., and Hansma, P.K.: Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761 (1999).CrossRefGoogle Scholar
Lourtioz, J.M., Benisty, H., Chelnokov, A., David, S., and Olivier, S.: Photonic crystals and the real world of optical telecommunications. Ann. Telecommun. 58, 1197 (2003).CrossRefGoogle Scholar
Holzhuter, G., Lakshminarayanan, K., and Gerber, T.: Silica structure in the spicules of the sponge Suberites domuncula. Anal. Bioanal. Chem. 382, 1121 (2005).CrossRefGoogle ScholarPubMed
Muller, W.E.G., Belikov, S.I., Tremel, W., Perry, C.C., Gieskes, W.W.C., Boreiko, A., and Schroder, H.C.: Siliceous spicules in marine demosponges (example Suberites domuncula). Micron 37, 107 (2006).CrossRefGoogle ScholarPubMed
Sethmann, I., Hinrichs, R., Wӧrheide, G., and Putnis, A.: Nano-cluster composite structure of calcitic sponge spicules–a case study of basic characteristics of biominerals. J. Inorg. Biochem. 100, 88 (2006).CrossRefGoogle ScholarPubMed
Weaver, J.C., Pietrasanta, L.I., Hedin, N., Chmelka, B.F., Hansma, P.K., and Morse, D.E.: Nanostructural features of demosponge biosilica. J. Struct. Biol. 144, 271 (2003).CrossRefGoogle ScholarPubMed
Muller, W.E.G., Wendt, K., Geppert, C., Wiens, M., Reiber, A., and Schroder, H.C.: Novel photoreception system in sponges? Unique transmission properties of the stalk spicules from the hexactinellid Hyalonema sieboldi. Biosens. Bioelectron. 21, 1149 (2006).Google Scholar
Sarikaya, M., Fong, H., Sunderland, N., Flinn, B.D., Mayer, G., Mescher, A., and Gaino, E.: Biomimetic model of a sponge-spicular optical fiber-mechanical properties and structure. J. Mater. Res. 16, 1420 (2001).CrossRefGoogle Scholar
Brotzen, F.R. and Moore, S.C.: Mechanical testing of thin films. Int. Mater. Rev. 39, 24 (1994).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
Griffith, A.A.: The phenomenon of rupture and flow in solids. Philos. Trans. R. Soc. London, Ser. A 221, 163 (1920).Google Scholar
Aizenberg, J., Weaver, J.C., Thanawala, M.S., Sundar, V.C., Morse, D.E., and Fratzl, P.: Materials science: Skeleton of Euplectella sp.: Structural hierarchy from the nanoscale to the macroscale. Science 309, 275 (2005).CrossRefGoogle Scholar
Fett, T. and Munz, D.: Stress Intensity Factors and Weight Functions (Computational Mechanics Publications, Southampton, UK, 1997), pp. 108109.Google Scholar
Rachdi, F., Hajji, L., Goze, C., Jones, D.J., Maireles-Torres, P., and Roziere, J.: Quantum size effects induced by confinement of C60 in MCM41. Solid State Commun. 100, 237 (1996).CrossRefGoogle Scholar
Subbiah, S. and Mokaya, R.: Transparent thin films and monoliths synthesized from fullerene doped mesoporous silica: Evidence for embedded monodispersed C60. Chem. Commun. 9, 92 (2003).CrossRefGoogle Scholar
Govindaraj, A., Nath, M., and Eswaramoorthy, M.: Studies of C60 and C70 incorporated in cubic mesoporous silica (MCM-48). Chem. Phys. Lett. 317, 35 (2000).CrossRefGoogle Scholar
Khlobystov, A.N., Britz, D.A., and Briggs, G.A.D.: Molecules in carbon nanotubes. Acc. Chem. Res. 38, 901 (2005).CrossRefGoogle ScholarPubMed
Woesz, A., Weaver, J.C., Kazanci, M., Dauphin, Y., Aizenberg, J., Morse, D.E., and Fratzl, P.: Micromechanical properties of biological silica in skeletons of deep-sea sponges. J. Mater. Res. 21, 2068 (2006).CrossRefGoogle Scholar
Barsoum, M.W.: Fundamentals of Ceramics (IOP Publishing Ltd., Bristol, UK, 2003).CrossRefGoogle Scholar
Miserez, A., Weaver, J.C., Thurner, P.J., Aizenberg, J., Dauphin, Y., Fratzl, P., Morse, D.E., and Zok, F.W.: Effects of laminate architecture on fracture resistance of sponge biosilica: Lessons from nature. Adv. Funct. Mater. 18, 1241 (2008).CrossRefGoogle Scholar