Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T11:26:21.571Z Has data issue: false hasContentIssue false

Temperature dependence of the indentation size effect

Published online by Cambridge University Press:  31 January 2011

Christopher A. Schuh*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
a)Address all correspondence to this author. e-mail: [email protected]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The influence of temperature on the indentation size effect is explored experimentally. Copper is indented on a custom-built high-temperature nanoindenter at temperatures between ambient and 200 °C, in an inert atmosphere that precludes oxidation. Over this range of temperatures, the size effect is reduced considerably, suggesting that thermal activation plays a major role in determining the length scale for plasticity.

Type
Materials Communications
Copyright
Copyright © Materials Research Society 2010

References

REFERENCES

1.Backes, B., Durst, K., Goken, M.Determination of plastic properties of polycrystalline metallic materials by nanoindentation: Experiments and finite element simulations. Philos. Mag. 86, 5541 (2006)CrossRefGoogle Scholar
2.Durst, K., Backes, B., Franke, O., Goken, M.Indentation size effect in metallic materials: Modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547 (2006)CrossRefGoogle Scholar
3.Durst, K., Backes, B., Goken, M.Indentation size effect in metallic materials: Correcting for the size of the plastic zone. Scr. Mater. 52, 1093 (2005)CrossRefGoogle Scholar
4.Durst, K., Franke, O., Bohner, A., Goken, M.Indentation size effect in Ni–Fe solid solutions. Acta Mater. 55, 6825 (2007)CrossRefGoogle Scholar
5.Elmustafa, A.A., Eastman, J.A., Rittner, M.N., Weertman, J.R., Stone, D.S.Indentation size effect: Large grained aluminum versus nanocrystalline aluminum-zirconium alloys. Scr. Mater. 43, 951 (2000)CrossRefGoogle Scholar
6.Elmustafa, A.A., Stone, D.S.Indentation size effect in polycrystalline F.C.C. metals. Acta Mater. 50, 3641 (2002)CrossRefGoogle Scholar
7.Nix, W.D., Gao, H.Indentation size effects in crystalline materials: A law for strain gradient plasticity. J. Mech. Phys. Solids 46, 411 (1998)CrossRefGoogle Scholar
8.Rester, M., Motz, C., Pippan, R.Indentation across size scales—A survey of indentation-induced plastic zones in copper {1 1 1} single crystals. Scr. Mater. 59, 742 (2008)CrossRefGoogle Scholar
9.Huang, Y., Gao, H., Nix, W.D., Hutchinson, J.W.Mechanism-based strain gradient plasticity—II. Analysis. J. Mech. Phys. Solids 48, 99 (2000)CrossRefGoogle Scholar
10.Fleck, N.A., Hutchinson, J.W.A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245 (2001)CrossRefGoogle Scholar
11.Fleck, N.A., Hutchison, J.W.Strain gradient plasticity. Adv. Appl. Mech. 33, 295 (1997)CrossRefGoogle Scholar
12.Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.Strain gradient plasticity: Theory and experiment. Acta Metall. Mater. 42, 475 (1994)CrossRefGoogle Scholar
13.Gao, H., Huang, Y., Nix, W.D., Hutchinson, J.W.Mechanism-based strain gradient plasticity—I. Theory. J. Mech. Phys. Solids 47, 1239 (1999)CrossRefGoogle Scholar
14.Oliver, W.C., Pharr, G.M.An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992)CrossRefGoogle Scholar
15.Doerner, M.F., Nix, W.D.A method for interpreting the data from depth-sensing indentation instruments. J. Mater. Res. 1, 601 (1986)CrossRefGoogle Scholar
16.Backes, B., Huang, Y.Y., Göken, M., Durst, K.The correlation between the internal material length scale and the microstructure in nanoindentation experiments and simulations using the conventional mechanism-based strain gradient plasticity theory. J. Mater. Res. 24, 1197 (2009)CrossRefGoogle Scholar
17.Lund, A.C., Hodge, A.M., Schuh, C.A.Incipient plasticity during nanoindentation at elevated temperatures. Appl. Phys. Lett. 85, 1362 (2004)CrossRefGoogle Scholar
18.Mason, J.K., Lund, A.C., Schuh, C.A.Determining the activation energy and volume for the onset of plasticity during nanoindentation. Phys. Rev. B 73, 054102 (2006)CrossRefGoogle Scholar
19.Schuh, C.A., Packard, C.E., Lund, A.C.Nanoindentation and contact-mode imaging at high temperatures. J. Mater. Res. 21, 725 (2006)CrossRefGoogle Scholar
20.Packard, C.E.Nanomechanical studies of metallic glasses at ambient and elevated temperatures. Ph.D. Thesis Massachusetts Institute of Technology, Cambridge, MA 2008Google Scholar
21.Frost, H.J., Ashby, M.F.Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics 1st ed (Pergamon Press, Oxford, UK 1982)Google Scholar
22.Ludwik, P.About the change in internal friction with temperature. Z. Phys. Chem. 91, 232 (1916)CrossRefGoogle Scholar
23.Engl, J., Heidtkamp, G.The temperature dependence of the cone indentation hardness in metals. Z. Phys. 95, 30 (1935)CrossRefGoogle Scholar
24.Westbrook, J.H.Temperature dependence of the hardness of pure metals. Trans. Am. Soc. Met. 45, 221 (1953)Google Scholar
25.Atkins, A.G., Tabor, D.Plastic indentation in metals with cones. J. Mech. Phys. Solids 13, 149 (1965)CrossRefGoogle Scholar
26.Staker, M.R., Holt, D.L.The dislocation cell size and dislocation density in copper deformed at temperatures between 25 and 700 °C. Acta Metall. 20, 569 (1972)CrossRefGoogle Scholar
27.Nibur, K.A., Akasheh, F., Bahr, D.F.Analysis of dislocation mechanisms around indentations through slip step observations. J. Mater. Sci. 42, 889 (2007)CrossRefGoogle Scholar
28.Nibur, K.A., Bahr, D.F.Identifying slip systems around indentations in FCC metals. Scr. Mater. 49, 1055 (2003)CrossRefGoogle Scholar
29.Christodoulou, N., Jonas, J.J.Work hardening and rate sensitivity material coefficients for OFHC Cu and 99.99% A1. Acta Metall. 32, 1655 (1984)CrossRefGoogle Scholar
30.Shu, J.Y., Fleck, N.A.The prediction of a size effect in microindentation. Int. J. Solids Struct. 35, 1363 (1998)CrossRefGoogle Scholar