Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T21:29:02.375Z Has data issue: false hasContentIssue false

Temperature dependence of the amorphization of NiTi irradiated with Ni ions

Published online by Cambridge University Press:  31 January 2011

P.J. Maziasz
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
D.F. Pedraza
Affiliation:
Metals and Ceramics Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831–6376
J.P. Simmons
Affiliation:
Metallurgical Engineering and Materials Science Department, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
N.H. Packan
Affiliation:
Metals and Ceramics Division, Oak Ridge. National Laboratory, Oak Ridge, Tennessee 37831–6376
Get access

Abstract

NiTi was irradiated with Ni ions at various temperatures in order to study the temperature dependence of the irradiation-induced crystalline-to-amorphous transition. The irradiations were conducted above the Af temperature, and thus the specimens contained only the ordered B2 (CsC1) phase. The irradiations to similar doses at 150, 200, and 250°C showed that the amorphization kinetics slow down appreciably as the temperature is increased in this range. No amorphization was detected at irradiation temperatures of 350°C or higher, even after doses of 4 dpa. The small volume fraction of amorphous material observed after irradiation to 0.67 dpa at 250°C indicates that the cutoff temperature for amorphization is in the vicinity of this temperature. The amorphous regions of partly amorphous samples are distributed in a nonuniform manner and exhibit a morphology similar to the martensitic microstructure that existed in the specimens before heating to the irradiation temperature. Large amorphous regions in these samples exhibit some very fine crystalline debris which tends to disappear with increasing irradiation dose. Post-irradiation annealing experiments indicated that no thermally activated crystallization occurred during irradiation at temperatures up to 250°C.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Binary Alloy Phase Diagrams, edited by Massalski, T. B. (American Society for Metals, Metals Park, OH, 1986), Vol. 2.Google Scholar
2Sandrock, G.D., Perkins, A. J., and Hehemann, R. F.,Metall. Trans. 2, 2769 (1971).Google Scholar
3Otsuka, K., Sawamura, T., and Shimizu, K., Phys. Stat. Sol. 5, 457 (1971).Google Scholar
4Buehler, W. J. and Wang, F. E., Ocean Eng. 1, 105 (1968).Google Scholar
5Wang, F. E., Buehler, W. J., and Pickart, S. J., J. Appl. Phys. 36, 3232 (1965).CrossRefGoogle Scholar
6Hanlon, J. E., Butler, S. R., and Wasilewski, R. J., Trans. TMSAIME 239, 1323 (1967).Google Scholar
7Matsumoto, M. and Honma, T., in “New Aspects of Martensitic Transformations”, JIM Int. Symp., The Japan Institute of Metals, Kobe, Japan, 199 (1976).Google Scholar
8Wasilewski, R. J., Butler, S. R., and Hanlon, J. E., Metall. Sci. J. 1, 104 (1967).CrossRefGoogle Scholar
9Wasilewski, R. J., Butler, S. R., Hanlon, J. E., and Worden, D., Metall. Trans. 2, 229 (1971).CrossRefGoogle Scholar
10Lotkov, A.I., Grishkov, V. N., Kuznetsov, A.V., and Kulkov, S. N., Phys. Stat. Sol. (a) 75, 373 (1983).CrossRefGoogle Scholar
11Ling, H. C. and Kaplow, R., Metall. Trans. A 11A, 77 (1979).CrossRefGoogle Scholar
12Kiachin, V. N., Paskal', Yu. I., Gunter, V. E., Monasevich, A. A., and Sivokha, V.P., Phys. Met. Metall. 46, 49 (1979).Google Scholar
13Nishida, M., Wayman, C. M., Kainuma, R., and Honma, T., Scripta Metall. 20, 899 (1986).CrossRefGoogle Scholar
14Goo, E. and Sinclair, R., Acta Metall. 33, 1717 (1985).Google Scholar
15Buschow, K. H. J., J. Phys. F: Met. Phys. 13, 563 (1983).Google Scholar
16Philip, T.V. and Beck, P. A., Trans. AIME. 221, 1269 (1957); P. Villars and L.D. Calvert, Pearson's Handbook for Crystallographic Data for Intermetallic Phases (American Society for Metals, Metals Park, OH, 1985), Vol. 3, p. 2905.Google Scholar
17Pedraza, A. J., Godbole, M. J., Kenik, E. A., Pedraza, D. F., and Lowndes, D. H. (Proc. Mater. Res. Soc. Symp.) (Materials Research Society, Pittsburgh, PA, 1987), Vol. 74, p. 185.Google Scholar
18Mori, H. and Fujita, H., Jpn. J. Appl. Phys. 21, L494 (1982).CrossRefGoogle Scholar
19aBrimhall, J.L., Kissinger, H.E., and Chariot, L.A., Rad. Eff. 77, 273 (1983);Google Scholar
bBrimhall, J. L., Kissinger, H. E., and Pelton, A. R., in Ion Implantation and Beam Processing of Materials, edited by Hubler, G. K., Holland, O.W., Clayton, C. R., and White, C.W. (North Holland, 1984), p. 163.Google Scholar
20Moine, P., Riviere, J. P., Ruault, M. O., Chaumont, J., and Pelton, A., Nucl. Instr. and Methods in Physics Res. B7/8, 20(1985).Google Scholar
21Maziasz, P. J., Packan, N. H.,Pedraza, D. F., and Lee, E. H., in Proc. of the 45th Annual EMSA Meeting, 220 (1987).Google Scholar
22Pedraza, D. F.. Journal of Materials Research 1, 425 (1986).Google Scholar
23Pedraza, D.F. and Mansur, L.K., Nucl. Instr. and Methods. B16, 203 (1986).Google Scholar
24Luzzi, D.E., Mori, H., Fujita, H., and Meshii, M., Acta Metall. 34, 629(1986).CrossRefGoogle Scholar
25Okamoto, P. R., Rhen, L.E., Pearson, J., Bhadra, R., and Grimsditch, M., J. Less-Common Metals 140, 231 (1988).Google Scholar
26Pedraza, D.F., Mater. Sci. & Eng. 90, 69 (1987).Google Scholar
27 NiTi2 was found to be more stable under irradiations at room temperature and at 150 °C, requiring a higher dose than the NiTi phases to become amorphous (E. H. Lee, unpublished research).Google Scholar
28Pedraza, A. J. (private communication).Google Scholar
29Fujita, H., in High Resolution and High Voltage Electron Microscopy, edited by Johnson, J. E., Hirsch, P., Fujita, H., Shimizu, R., and Thomas, G. (Alan R. Liss, Inc., New York, 1986), p. 45.Google Scholar
30Eridon, J., Was, G.S., and Rehn, L., Journal of Materials Research 4, 626 (1988).Google Scholar
31Pedraza, D. F., “Irradiation as a tool for studying solid state amorphization phenomena”, Proc. of the Symp. on Irradiation-Enhanced Materials Science and Engineering, to be published in Metall. Trans. (1990).CrossRefGoogle Scholar