Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-10T20:59:42.919Z Has data issue: false hasContentIssue false

Tellurium nanowire arrays synthesized by electrochemical and electrophoretic deposition

Published online by Cambridge University Press:  03 March 2011

A. W. Zhao
Affiliation:
Laboratory of Functional Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
C. H. Ye
Affiliation:
Laboratory of Functional Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
G. W. Meng
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
L. D. Zhang
Affiliation:
Laboratory of Functional Nanomaterials and Nanostructures, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
P. M. Ajayan
Affiliation:
Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180
Get access

Abstract

This article describes both electrochemical deposition and electrophoretic deposition of high-density tellurium (Te) nanowire arrays with wire diameters of 60 nm and lengths of 15–20 μm in the nanochannels of anodic aluminum oxide (AAO) templates. The Te nanowires synthesized via electrochemical deposition (ECD) are generally single crystalline in nature with the wire longitudinal axis along the [001] direction, whereas those synthesized via electrophoretic deposition (EPD) show polycrystalline structures with numerous tiny Te crystallites packed randomly in the wires. The single-crystalline Te nanowires produced by the ECD route are believed to form under a near chemical equilibrium condition; however, the imposed transport and the rapid packing of Te nanocrystallites in the nanochannels of AAO template in external fields lead to polycrystalline Te nanowires in the EPD process. This comparative study of the Te nanowire formation in the nanochannels of AAO template will facilitate the tailoring of the growth of other inorganic nanowires of high quality.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Postma, H.W., Teepen, T., Yao, Z., Grifoni, M., and Dekker, C., Science 293, 76 (2001).CrossRefGoogle Scholar
2.Black, C.T., Murray, C.B., Sandstrom, R.L., and Sun, S., Science 290, 131 (2000).Google Scholar
3.Koike, K., Matsuyama, H., Hirayama, Y., Tanahashi, K., Kanemura, T., Kitakami, O., and Shimada, Y., Appl. Phys. Lett. 78, 784 (2001).CrossRefGoogle Scholar
4.Kruis, F.E., Nielsch, K., Fissan, H., Rellinghaus, B., and Wassermann, E.F., Appl. Phys. Lett. 73, 547 (1998).Google Scholar
5.Chow, E., Lin, S.Y., Johnson, S.G., Villeneuve, P.R., Joannopoulos, J.D., Wendt, J.R., Vawter, G.A., Zubrzycki, W., Hou, H., and Alleman, A., Nature 407, 283 (2000).CrossRefGoogle Scholar
6.Hulteen, J.C. and Martin, C.R., J. Mater. Chem. 7, 1075 (1997).CrossRefGoogle Scholar
7.Li, Y., Meng, G.W., and Zhang, L.D., Appl. Phys. Lett. 76, 2011 (2000).Google Scholar
8.Lakshmi, B.B., Dorhout, P.K., and Martin, C.R., Chem. Mater. 9, 857 (1997).Google Scholar
9.Van der Biest, O.O. and Vandeperre, L.J., Ann. Rev. Mater. Sci. 29, 327 (1999).Google Scholar
10.Wang, Y.C., Leu, I.C., and Hon, M.H., J. Mater. Chem. 12, 2439 (2002).CrossRefGoogle Scholar
11.Ikari, T., Berger, H., and Levy, F., Mater. Res. Bull. 21, 99 (1986).CrossRefGoogle Scholar
12.Araki, K. and Tanaka, T., Jpn. J. Appl. Phys. 11, 472 (1972).Google Scholar
13.Ufimtsev, V.B., Osvensky, V.B., Bublik, V.T., Sagalova, T.B., and Jouravlev, O.E., Adv. Perfor. Mater. 4, 189 (1997).Google Scholar
14.Huber, C.A., Huber, T.E., Sadoqi, M., Lubin, J.A., Manalis, S., and Prater, C.B., Science 263, 800 (1994).Google Scholar
15.Mayers, B. and Xia, Y.J., Mater. Chem. 12, 1875 (2002).CrossRefGoogle Scholar
16.Mayers, B. and Xia, Y., Adv. Mater. 14, 279 (2002).Google Scholar
17.Mo, M., Zeng, J., Liu, X., Yu, W., Zhang, S., and Qian, Y., Adv. Mater. 14, 1658 (2002).Google Scholar
18.Gabriel, T., Nandhakamar, I.S., and Attard, G.S., Electrochem. Commun. 4, 610 (2002).CrossRefGoogle Scholar
19.Masuda, H. and Fukuda, K., Science 268, 1466 (1995).CrossRefGoogle Scholar
20.Masuda, H. and Stach, M., Jpn. J. Appl. Phys. 35, 1126 (1996).Google Scholar
21.Lepiller, C., Cowache, P., Guillemoles, J.F., Gibson, N., Özsan, E., and Lincot, D., Thin Solid Films 361–362, 118 (2000).Google Scholar
22. JCPDS No. 36–1452 (International Center for Diffraction Data, Newton Square, PA, 1986).Google Scholar
23.Furuta, N., Ohasi, Y., Itinose, H., and Igarashi, Y., Jpn. J. Appl. Phys. 14, 929 (1975).Google Scholar
24.Morri, E., Backer, C.K., Keynolds, J.K., and Raicsh, K.W., Electroanal. Chem. 252, 441 (1988).Google Scholar
25.Askeland, D.R., The Science and Engineering of Materials (Brooks, Boston, MA, 1984).Google Scholar
26.Tang, Z., Kotov, N.A., and Giersig, M., Science 297, 237 (2002).Google Scholar