Hostname: page-component-7bb8b95d7b-w7rtg Total loading time: 0 Render date: 2024-10-06T01:04:23.275Z Has data issue: false hasContentIssue false

Tailoring of the self-organized structure of sulfonated polyaniline from a fibrillar network to a colloidal aggregate

Published online by Cambridge University Press:  31 January 2011

Tushar Jana
Affiliation:
Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
Arun K. Nandi*
Affiliation:
Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Self-organized structures of the sodium salt of sulfonated polyaniline (prepared from the leucoemeraldine base of polyaniline) in the presence of a mixture of cationic and nonionic surfactants were studied. It was used in the latex form, which has been prepared using a conventional method with sodium dodecyl sulfate. The cationic surfactant used was didodecyl dimethyl ammonium bromide, and the nonionic surfactant used was Triton-X-100. The supramolecular organization was made in aqueous medium by varying the concentrations of the components. A three-dimensional fibrillar network and colloidal aggregate were produced due to the supramolecular organization. The thermal study indicated reversible first-order phase transition in the former cases fulfilling the criteria of thermoreversible gels. A probable explanation of the different morphology from the variation of charge density on the vesicle surface has been offered. The conductivity of fibrillar network is two orders higher than that of the colloidal aggregate.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Ruokolainen, J., Makinen, R., Torkkeli, M., Makela, T., Serimaa, R., Brinke, G. ten, and Ikkala, O., Science 280, 557 (1998).Google Scholar
2.Ramos, L., Lubensky, T.C., Dan, N., Nelson, P., and Weitz, D.A., Science 286, 2325 (1999).CrossRefGoogle Scholar
3.Vikki, T., Ruokolainen, J., Ikkala, O., Passiniemi, P., Isotalo, H., Torkkeli, M., and Serima, R., Macromolecules 30, 4064 (1997).Google Scholar
4.Cabane, B., Lindell, K., Engstrom, S., and Lindman, B., Macromolecules 29, 3188 (1996).Google Scholar
5.Antonietti, M. and Maskos, M., Macromolecules 29, 4199 (1996).Google Scholar
6.Macknight, W.J., Ponomarenko, E.A., and Tirrel, D.A., Acc. Chem. Res. 31, 781 (1998).Google Scholar
7.Yeh, F., Solokov, E.L., Khokhlov, A.R., and Chu, B., J. Am. Chem. Soc. 118, 6615 (1996).Google Scholar
8.Jana, T. and Nandi, A.K., Langmuir 16, 3141 (2000).Google Scholar
9.Kinlen, P.J., Liu, J., Ding, Y., Graham, C.R., and Remsen, E.E., Macromolecules 31, 1735 (1998).Google Scholar
10.Zheng, W.Y., Wang, R.H., Levon, K., Rong, Z.Y., Taka, T., and Pan, W., Macromol. Chem. Phys 196, 2443 (1995).Google Scholar
11.(a) Chen, H.L. and Hsiao, M.S., Macromolecules 32, 2967 (1999); (b) M.S. Hsiao, H.L. Chen, and D.J. Liaw, Macromolecules 33, 221 (2000).Google Scholar
12.Yue, J., Wang, Z.H., Cromack, K.R., Epstein, A.J., and Mac Diarmid, A.G., J. Am. Chem. Soc. 113, 2665 (1991).Google Scholar
13.Wei, X.L., Wang, Y.Z., Long, S.M., Bobeczko, C., and Epstein, A.J., J. Am. Chem. Soc. 118, 2545 (1996).CrossRefGoogle Scholar
14.Barbero, C., Miras, M.C., Kotz, R., and Hass, O., Synth. Met. 55, 1539 (1993).Google Scholar
15.Ferreira, M. and Rubner, M.F., Macromolecules 28, 7107 (1995).Google Scholar
16.Yue, J. and Epstein, A.J., J. Chem. Soc., Chem. Commun. 21, 1540 (1992).CrossRefGoogle Scholar
17.Jiang, P., Bertone, J.F., Huang, K.S., and Colvin, V.L., Chem. Mater. 11, 2132 (1999).Google Scholar
18.Yushiyama, T. and Sogami, I., Phys. Rev. Lett. 53, 2153 (1984).Google Scholar
19.Imhof, A., Blaacheren, A. Van, Maret, G., Mellema, J., and Dhont, J.K.G., J. Chem. Phys. 100, 2170 (1994).Google Scholar
20.(a) Holland, T.B., Blanford, C., and Stein, A., Science 281, 538 (1998); (b) A.A. Zakhidov, H.R. Baughman, Z. Iqbal, C. Cui, L. Khayyrullin, O. Dantos, J. Marti, and V.G. Ralchenko, Science 282, 897 (1998).Google Scholar
21.Fizazi, A., Moulton, J., Pakbaz, K., Rughooputh, S.D.D.V., Smith, P., and Heeger, A.J., Phys. Rev. Lett. 64, 2180 (1990).Google Scholar
22.Cao, Y., Andreatte, A., Heeger, A.J., and Smith, P., Polymer 30, 2305 (1989).Google Scholar
23.Frommer, J.E. and Chance, R.R., in Encyclopedia of Polymer Science & Engineering, 2nd ed., edited by Mark, H.F., Bikales, N.M., Overberger, C.G., and Menges, G. (John Wiley, New York, 1986), p. 473.Google Scholar
24.Daniel, C., Dammer, C., and Guenet, J.M., Polym. Commun. 35, 4243 (1994).Google Scholar
25.Lochhead, R.Y., Davidson, J.A., and Thomas, G.M., in Polymers in Aqueous Media Performance Through Association, edited by Glass, J.E. (American Chemical Society, Washington, DC, 1989), p. 113.Google Scholar
26.Gonzalez, A.E., Phys. Rev. Lett. 86, 1243 (2001).Google Scholar
27.Malik, S., Jana, T., and Nandi, A.K., Macromolecules 34, 275 (2001).Google Scholar
28.Jana, T., Roy, S., and Nandi, A.K., Synth. Met. 132, 257 (2003).Google Scholar