Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-22T22:37:27.475Z Has data issue: false hasContentIssue false

Synthesis, Structure, and Superconducting Properties of Tantalum Carbide Nanorods and Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Akihiko Fukunaga
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890
Shaoyan Chu
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890
Michael E. McHenry
Affiliation:
Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213–3890
Get access

Abstract

Tantalum carbide nanorods and nanoparticles have been synthesized using a vapor-solid reaction path starting with CVD grown carbon nanotube precursors. Their structures were studied using XRD, TEM, and HRSEM. Superconducting properties were characterized using a SQUID magnetometer. For reactions at lower temperatures, carbide nanorods, which replicate the ∼14 nm diameter of the precursor carbon nanotubes, are observed. For higher temperature reactions, coarsened carbide nanoparticles (100–250 nm) are observed which have spherical or cubic-faceted morphologies. A morphological Rayleigh instability is postulated as initiating the transition from nanorod to nanoparticle morphologies. Stoichiometric bulk TaC crystallizes in the rock salt structure and has a superconducting transition temperature of 9.7 K. In TaC nanorods and nanoparticles, the superconducting properties correlate with the lattice parameter. Nanoparticles with a little higher lattice parameter than the ideal one show higher Tc and higher fields at which the superconductivity disappears than stoichiometric bulk TaC.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Iijima, S., Nature (London) 354, 56 (1991).CrossRefGoogle Scholar
2.Ebbesen, T. W. and Ajayan, P. M., Nature (London) 358, 220 (1992).CrossRefGoogle Scholar
3.Tsang, S. C., Chen, Y. K., Harris, P. J. F., and Green, M. L. H., Nature (London) 372, 159 (1994).Google Scholar
4.Kratschmer, W., Lamb, L. D., Fostiropoulos, K., and Huffman, D. R., Nature (London) 347, 354 1990).CrossRefGoogle Scholar
5.Charlier, J. C., Ph. Lambin, and Ebbesen, T. W., Phys. Rev. B 54, R8377 (1996).CrossRefGoogle Scholar
6.Ajayan, P. M. and Iijima, S., Nature (London) 361, 333 (1993).CrossRefGoogle Scholar
7.Gurret-Piecourt, C., Yebouar, Y., Loiseau, A., and Pascard, H., Nature (London) 372, 761 (1994).CrossRefGoogle Scholar
8.Toth, L. E., Transition Metal Carbides and Nitrides (Academic Press, New York, 1971).Google Scholar
9.Gubanv, V. A., Lvanovsky, A. L., and Zhukov, V. P., Electronic Structure of Refractory Carbides and Nitrides (Cambridge University Press, Cambridge, 1994).Google Scholar
10.Kosolapova, T.Ya., Carbides (Plenum Press, New York, London, 1971).Google Scholar
11.Storms, E. K., The Refractory Carbides (Academic Press, New York and London, 1967).Google Scholar
12.Dai, H., Wong, E. W., Lu, Y. Z., Fan, S., and Lieber, C. M., Nature (London) 375, 769 (1995).CrossRefGoogle Scholar
13.Rayleigh, L., Proc. London Math. Soc. 10, 4 (1878).CrossRefGoogle Scholar
14.Cullity, B. R., Elements of X-ray Diffraction, 2nd ed. (Addison-Wesly Series in Metallurgy and Materials, Reading MA, 1978).Google Scholar
15.Toth, L. E., Ishikawa, M., and Chang, Y. A., Acta Metall. 16, 1183 (1968).CrossRefGoogle Scholar
16.Giorgi, A. L., Syklarz, E. G., Storms, E. K., Bowman, A. L., and Matthias, B. T., Phys. Rev. 125, 837 (1962).CrossRefGoogle Scholar
17.Livingston, J. D., Phys. Rev. 129, 1943 (1963).CrossRefGoogle Scholar
18.Fietz, W. A. and Webb, W. W., Phys. Rev. 178, 657 (1969).CrossRefGoogle Scholar
19.Fink, H. J. and Thorsen, A. C., Phys. Rev. 138 (4A) A1170 (1965).CrossRefGoogle Scholar
20.Nichols, F. A. and Mullins, W. W., Trans. Met. Soc. AIME 233, 1840 (1965).Google Scholar
21.Nichols, F. A., J. Mater. Sci. 11, 1077 (1976).CrossRefGoogle Scholar