Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:34:47.477Z Has data issue: false hasContentIssue false

Synthesis of YBa2Cu3O7−x powder by autoignition of citrate-nitrate gel

Published online by Cambridge University Press:  03 March 2011

Sukumar Roy
Affiliation:
Electroceramics Laboratory, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
Das A. Sharma
Affiliation:
Electroceramics Laboratory, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
S.N. Roy
Affiliation:
Electroceramics Laboratory, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
H.S. Maiti
Affiliation:
Electroceramics Laboratory, Central Glass and Ceramic Research Institute, Calcutta 700 032, India
Get access

Abstract

A simple and convenient method for the synthesis of YBa2Cu3O7−x powder is described. The technique involves autoignition of a citrate-nitrate gel resulting from a thermally induced oxidation-reduction reaction to yield an ash that upon calcination produces the desired compound. The resulting powder is pure, homogeneous, and possesses a reasonably fine particle size. The autoignition is restricted to a particular range of citrate-nitrate ratio in the gel. Attempts have been made to understand the ignition process with the help of Thermogravimetry (TG) and Differential Thermal Analysis (DTA) of the samples. The process appears to have a higher degree of reproducibility and a good potential for large-scale production.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Marcilly, C., Courty, P., and Delmon, B., J. Am. Ceram. Soc. 53, 56 (1970).CrossRefGoogle Scholar
2Anderson, D. J. and Sale, F. R., Powder Metall. 1, 14 (1979).CrossRefGoogle Scholar
3Baythoun, M. S. G. and Sale, F. R., J. Mater. Sci. 17, 2757 (1982).CrossRefGoogle Scholar
4Chu, C. T. and Dunn, B., J. Am. Ceram. Soc. 70, C375 (1987).CrossRefGoogle Scholar
5Dunn, B., Chu, C. T., Zhou, L. W., Cooper, J. R., and Grüner, G., Adv. Ceram. Mater. 2, 343 (1987).CrossRefGoogle Scholar
6Sale, F. R. and Mahloojchi, F., Ceram. Inter. 14, 229 (1988).CrossRefGoogle Scholar
7Thampi, K. R. and Kiwi, J., J. Am. Ceram. Soc. 71, C512 (1988).Google Scholar
8Varma, H. K., Kumar, K. P., Warrier, K. G. K, and Damodaran, A. D., J. Mater. Sci. Lett. 8, 1313 (1989).CrossRefGoogle Scholar
9Rambabu, D., Jpn. J. Appl. Phys. 29, 507 (1990).CrossRefGoogle Scholar
10Kingsley, J. J. and Patil, K. C., Mater. Lett. 6, 427 (1988).CrossRefGoogle Scholar
11Gopalan, R., Murthy, Y. S. N, Rajeshekharan, T., Ravi, S., and Seshubai, V., Mater. Lett. 8, 441 (1989).CrossRefGoogle Scholar
12Chick, I. A., Pedarson, L. R., Maupin, G. D., Bates, J. L., Thomas, L. E., and Exarhos, G. J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
13Pederson, L. R., Maupin, G. D., Weber, W. J., McReady, D. J., and Stephens, R. W., Mater. Lett. 10, 437 (1991).CrossRefGoogle Scholar
14Ravindranathan, P. and Patil, K. C., J. Mater. Sci. Lett. 5, 221 (1986).CrossRefGoogle Scholar
15Ravindranathan, P., Mahesh, G. V., and Patil, K. C., J. Solid State Chem. 66, 20 (1987).CrossRefGoogle Scholar
16Das, A. Sharma, Basu, R. N., and Maiti, H. S., J. Mater. Sci. Lett. 11, 122d (1992).Google Scholar
17Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 84, 88 (1990).CrossRefGoogle Scholar
18Kourtakis, K., Robbins, M., and Gallagher, P. K., J. Solid State Chem. 84, 290 (1989).CrossRefGoogle Scholar
19Kourtakis, K., Robbins, M., Gallagher, P. K., and Tiefel, T., J. Mater. Res. 4, 1289 (1989).CrossRefGoogle Scholar