Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-26T01:22:36.219Z Has data issue: false hasContentIssue false

Synthesis of tungsten oxide nanoparticles using a hydrothermal method at ambient pressure

Published online by Cambridge University Press:  17 July 2014

Majid Ahmadi
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA
Reza Younesi
Affiliation:
Department of Energy Conversion and Storage, Technical University of Denmark, Roskilde 4000, Denmark
Maxime J-F. Guinel*
Affiliation:
Department of Physics, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA; and Department of Chemistry, College of Natural Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936-8377, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Tungsten oxide (WO3) nanostructures receive sustained interest for a wide variety of applications, and especially for its usage as a photocatalyst. It is therefore important to find suitable methods allowing for its easy and inexpensive large scale production. Tungstite (WO3·H2O) nanoparticles were synthesized using a simple and inexpensive low temperature and low pressure hydrothermal (HT) method. The precursor solution used for the HT process was prepared by adding hydrochloric acid to diluted sodium tungstate solutions (Na2WO4·2H2O) at temperatures below 5 °C and then dissolved using oxalic acid. This HT process yielded tungstite (WO3·H2O) nanoparticles with the orthorhombic structure. A heat treatment at temperatures at or above 300 °C resulted in a phase transformation to monoclinic WO3, while preserving the nanoparticles morphology. The production of WO3 nanoparticles using this method is therefore a three step process: protonation of tungstate ions, crystallization of tungstite, and phase transformation to WO3. Furthermore, this process can be tailored. For example, we show that WO3 can be doped with cesium and that nanorods can also be obtained. The products were characterized using powder x-ray diffraction, transmission electron microscopy (including electron energy-loss spectroscopy and electron diffraction), and x-ray photoelectron spectroscopy.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Soultanidis, N., Zhou, W., Kiely, C.J., and Wong, M.S.: Solvothermal synthesis of ultrasmall tungsten oxide nanoparticles. Langmuir 28, 17771 (2012).CrossRefGoogle ScholarPubMed
Santato, C., Odziemkowski, M., Ulmann, M., and Augustynski, J.: Crystallographically oriented mesoporous WO3 films: Synthesis, characterization, and applications. J. Am. Chem. Soc. 123, 10639 (2001).CrossRefGoogle ScholarPubMed
Zheng, H., Tachibana, Y., and Kalantar-zadeh, K.: Dye-sensitized solar cells based on WO3 . Langmuir 26, 19148 (2010).CrossRefGoogle ScholarPubMed
Wood, V., Panzer, M.J., Halpert, J.E., Caruge, J.M., Bawendi, M.G., and Bulovic, V.: Selection of metal oxide charge transport layers for colloidal quantum dot LEDs. ACS Nano 3, 3581 (2009).CrossRefGoogle ScholarPubMed
Srinivasan, A. and Miyauchi, M.: Chemically stable WO3 based thin-film for visible-light induced oxidation and superhydrophilicity. J. Phys. Chem. C 116, 15421 (2012).CrossRefGoogle Scholar
Ahmed, S., Hassan, I.A.I., Roy, H., and Marken, F.: Photoelectrochemical transients for chlorine/hypochlorite formation at “roll-on” nano-WO3 film electrodes. J. Phys. Chem. C 117, 7005 (2013).CrossRefGoogle Scholar
Chen, X., Ye, J., Ouyang, S., Kako, T., Li, Z., and Zou, Z.: Enhanced incident photon-to-electron conversion efficiency of tungsten trioxide photoanodes based on 3D-photonic crystal design. ACS Nano 5, 4310 (2011).CrossRefGoogle ScholarPubMed
Walter, M.G., Warren, E.L., McKone, J.R., Boettcher, S.W., Mi, Q., Santori, E.A., and Lewis, N.S.: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).CrossRefGoogle ScholarPubMed
Maeda, K., Higashi, M., Lu, D., Abe, R., and Domen, K.: Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858 (2010).CrossRefGoogle ScholarPubMed
Higashi, M., Abe, R., Ishikawa, A., Takata, T., Ohtani, B., and Domen, K.: Z-scheme overall water splitting on modified-TaON photocatalysts under visible light (λ<500 nm). Chem. Lett. 37, 138 (2008).CrossRefGoogle Scholar
Waller, M.R., Townsend, T.K., Zhao, J., Sabio, E.M., Chamousis, R.L., Browning, N.D., and Osterloh, F.E.: Single-crystal tungsten oxide nanosheets: Photochemical water oxidation in the quantum confinement regime. Chem. Mater. 24, 698 (2012).CrossRefGoogle Scholar
Coridan, R.H., Shaner, M., Wiggenhorn, C., Brunschwig, B.S., and Lewis, N.S.: Electrical and photoelectrochemical properties of WO3/Si tandem photoelectrodes. J. Phys. Chem. C 117, 6949 (2013).CrossRefGoogle Scholar
Su, J., Guo, L., Bao, N., and Grimes, C.A.: Nanostructured WO3/BiVO4 heterojunction films for efficient photoelectrochemical water splitting. Nano Lett. 11, 1928 (2011).CrossRefGoogle ScholarPubMed
Cui, X., Shi, J., Chen, H., Zhang, L., Guo, L., Gao, J., and Li, J.: Platinum/mesoporous WO3 as a carbon-free electrocatalyst with enhanced electrochemical activity for methanol oxidation. J. Phys. Chem. B 112, 12024 (2008).CrossRefGoogle ScholarPubMed
Chen, Q., Li, J., Li, X., Huang, K., Zhou, B., Cai, W., and Shangguan, W.: Visible-light responsive photocatalytic fuel cell based on WO3/W photoanode and Cu2O/Cu photocathode for simultaneous wastewater treatment and electricity generation. Environ. Sci. Technol. 46, 11451 (2012).CrossRefGoogle Scholar
Wang, P., Huang, B., Qin, X., Zhang, X., Dai, Y., and Whangbo, M.H.: Ag/AgBr/WO3.H2O: Visible-light photocatalyst for bacteria destruction. Inorg. Chem. 48, 10697 (2009).CrossRefGoogle Scholar
Chen, X., Zhou, Y., Liu, Q., Li, Z., Liu, J., and Zou, Z.: Ultrathin, single-crystal WO3 nanosheets by two-dimensional oriented attachment toward enhanced photocatalystic reduction of CO2 into hydrocarbon fuels under visible light. ACS Appl. Mater. Interfaces 4, 3372 (2012).CrossRefGoogle ScholarPubMed
Yin, J., Cao, H., Zhang, J., Qu, M., and Zhou, Z.: Synthesis and applications of γ-tungsten oxide hierarchical nanostructures. Cryst. Growth Des. 13, 759 (2013).CrossRefGoogle Scholar
Li, D., Wu, G., Gao, G., Shen, J., and Huang, F.: Ultrafast coloring-bleaching performance of nanoporous WO3–SiO2 gasochromic films doped with Pd catalyst. ACS Appl. Mater. Interfaces 3, 4573 (2011).CrossRefGoogle ScholarPubMed
Xiang, Q., Meng, G.F., Zhao, H.B., Zhang, Y., Li, H., Ma, W.J., and Xu, J.Q.: Au nanoparticle modified WO3 nanorods with their enhanced properties for photocatalysis and gas sensing. J. Phys. Chem. C 114, 2049 (2010).CrossRefGoogle Scholar
Righettoni, M., Tricoli, A., and Pratsinis, S.E.: Thermally-stable, silica-doped ε-WO3 for sensing of acetone in the human breath. Chem. Mater. 22, 3152 (2010).CrossRefGoogle Scholar
Gu, G., Zheng, B., Han, W.Q., Roth, S., and Liu, J.: Tungsten oxide nanowires on tungsten substrates. Nano Lett. 2, 849 (2002).CrossRefGoogle Scholar
Hudson, M.J., Peckett, J.W., and Harris, P.J.F.: A new and effective synthesis of non-stoichiometric metal oxides such as oxygen-deficient WO2.72 . J. Mater. Chem. 13, 445 (2003).CrossRefGoogle Scholar
Polleux, J., Gurlo, A., Barsan, N., Weimar, U., Antonietti, M., and Niederberger, M.: Template-free synthesis and assembly of single-crystalline tungsten oxide nanowires and their gas-sensing properties. Angew. Chem., Int. Ed. 45, 261 (2005).CrossRefGoogle ScholarPubMed
Polleux, J., Pinna, N., Antonietti, M., and Niederberger, M.: Growth and assembly of crystalline tungsten oxide nanostructures assisted by bioligation. J. Am. Chem. Soc. 127, 15595 (2005).CrossRefGoogle ScholarPubMed
Klinke, C., Hannon, J.B., Gignac, L., Reuter, K., and Avouris, P.: Tungsten oxide nanowire growth by chemically induced strain. J. Phys. Chem. B 109, 17787 (2005).CrossRefGoogle ScholarPubMed
York, A.P.E., Sloan, J., Green, M.L.H., and Sloan, J.: Epitaxial growth of WO3−x needles on (10–10) and (01-10) WC surfaces produced by controlled oxidation with CO2 . Chem. Commun. 3, 269270 (1999).CrossRefGoogle Scholar
Gu, Z., Zhai, T., Gao, B., Sheng, X., Wang, Y., Fu, H., Ma, Y., and Yao, J.: Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B 110, 23829 (2006).CrossRefGoogle ScholarPubMed
Shibuya, M. and Miyauchi, M.: Site-selective deposition of metal nanoparticles on aligned WO3 nanotrees for super-hydrophilic thin films. Adv. Mater. 21, 1373 (2009).CrossRefGoogle Scholar
Supothina, S., Seeharaj, P., Yoriya, S., and Sriyudthsak, M.: Synthesis of tungsten oxide nanoparticles by acid precipitation method. Ceram. Int. 33, 931 (2007).CrossRefGoogle Scholar
Sun, M., Xu, N., Cao, Y.W., Yao, J.N., and Wang, E.G.: Nanocrystalline tungsten oxide thin film: Preparation, microstructure, and photochromic behavior. J. Mater. Res. 15, 927 (2000).CrossRefGoogle Scholar
Ahmadi, M. and Guinel, M.: Large-scale synthesis of tungsten oxide (WO3) nanoleaves, nanoparticles and nanoflakes. Microsc. Microanal. 19(S2), 1580 (2013).CrossRefGoogle Scholar
Ahmadi, M. and Guinel, M.: Synthesis and characterization of tungstite (WO3.H2O) nanoleaves and nanoribbons. Acta Mater. 69, 203 (2014).CrossRefGoogle Scholar
Szymanski, J.T. and Roberts, A.C.: The crystal structure of tungstite, WO3.H2O. Can. Minerol. 22, 681 (1984).Google Scholar
Loopstra, B.O. and Boldrini, P.: Neutron diffraction investigation of WO3 . Acta Cryst. 21, 158 (1966).CrossRefGoogle Scholar
Holleman, A.F., Wiberg, E., and Wiberg, N.: Inorganic Chemistry (Academic Press, Berlin, New York, Walter De Gruyter, San Diego, 2001); p. 1389.Google Scholar
Balazsi, C. and Pfeifer, J.: Structure and morphology changes caused by wash treatment of tungstic acid precipitates. Solid State Ionics 124, 73 (1999).CrossRefGoogle Scholar
Miseki, Y., Kusama, H., Sugihara, H., and Sayama, K.: Cs-modified WO3 photocatalyst showing efficient solar energy conversion for O2 production and Fe (III) ion reduction under visible light. J. Phys. Chem. Lett. 1, 1196 (2010).CrossRefGoogle Scholar
Ahmadi, M., Sahoo, S., Younesi, R., Gaur, A.P.S., Katiyar, R.S., and Guinel, M.: WO3 nano-ribbons: Their phase transformation from tungstite (WO3.H2O) to tungsten oxide (WO3). J. Mater. Sci. 49(17), 5899 (2014).CrossRefGoogle Scholar
Baek, Y. and Yong, K.: Controlled growth and characterization of tungsten oxide nanowires using thermal evaporation of WO3 powder. J. Phys. Chem. C 111, 1213 (2007).CrossRefGoogle Scholar
Ahn, C.C. and Krivanek, O.L.: EELS Atlas: A Reference Guide of Electron Energy Loss Spectra Covering All Stable Elements (ASU HREM Facility & GatanInc, Warrendale, PA, 1983).Google Scholar
Sefat, A.S., Amow, G., Wu, M.Y., Botton, G.A., and Greedan, J.E.: High-resolution EELS study of the vacancy-doped metal/insulator system, Nd1-x TiO3, x = 0 to 0.33. J. Solid State Chem. 178, 1008 (2005).CrossRefGoogle Scholar
Ahn, C.C. and Rez, P.: Inner shell edge profiles in electron energy loss spectroscopy. Ultramicroscopy 17, 105 (1985).CrossRefGoogle Scholar
Jollet, F., Petit, T., Gota, S., Thromat, N., Soyer Gautier, M., and Pasturel, A.: The electronic structure of uranium dioxide: An oxygen K-edge x-ray absorption study. J. Phys.: Condens. Matter 9, 9393 (1997).Google Scholar
Harvey, A., Guo, B., Kennedy, I., Risbud, S., and Leppert, V.: A systematic study of the oxygen K edge in the cubic and less common monoclinic phases of the rare earth oxides (Ho, Er, Tm, Yb) by electon energy loss spectroscopy. J. Phys.: Condens. Matter 18, 2181 (2006).Google Scholar
McComb, D.W.: Bonding and electronic structure in zirconia pseudopolymorphs investigated by electron energy-loss spectroscopy. Phys. Rev. B 54, 7094 (1996).CrossRefGoogle ScholarPubMed
Supplementary material: Image

Ahmadi Supplementary Material

Figure S1

Download Ahmadi Supplementary Material(Image)
Image 2.5 MB
Supplementary material: Image

Ahmadi Supplementary Material

Figure S2

Download Ahmadi Supplementary Material(Image)
Image 855.6 KB
Supplementary material: Image

Ahmadi Supplementary Material

Figure S3

Download Ahmadi Supplementary Material(Image)
Image 1.1 MB
Supplementary material: Image

Ahmadi Supplementary Material

Figure S4

Download Ahmadi Supplementary Material(Image)
Image 1.6 MB
Supplementary material: Image

Ahmadi Supplementary Material

Figure S5

Download Ahmadi Supplementary Material(Image)
Image 2.8 MB
Supplementary material: Image

Ahmadi Supplementary Material

Figure S6

Download Ahmadi Supplementary Material(Image)
Image 1.9 MB
Supplementary material: File

Ahmadi Supplementary Material

Electronic Supplementary Information

Download Ahmadi Supplementary Material(File)
File 3.5 MB