Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T02:46:35.907Z Has data issue: false hasContentIssue false

Synthesis of TiO2@C core–shell nanostructures with various crystal structures by hydrothermal and postheat treatments

Published online by Cambridge University Press:  29 August 2012

Quanjun Li
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Ran Liu
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Bo Liu
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Dongmei Li
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Bo Zou
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Tian Cui
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
Bingbing Liu*
Affiliation:
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

TiO2@C core–shell nanostructures with various crystal structures of TiO2-B, anatase, and rutile were successfully synthesized by a simple hydrothermal process and postheat treatments. As-synthesized precursor hydrogen titanate@carbonaceous nanoribbons transformed into TiO2-B@C nanoribbons at 400 °C and further transformed into anatase and rutile TiO2@C nanoribbons at 700 and 800 °C, respectively. The morphology of nanoribbons can be retained up to 800 °C. The transformation temperature (800 °C) from anatase to rutile phase is lower than that of TiO2 nanofibers without carbon layers and anatase TiO2@C nanoparticles. These results show that the carbon shell plays important roles in promoting the phase transition from anatase to rutile phase and protecting the nanoribbon-like morphology. The formation mechanism of the TiO2@C core–shell nanostructures with various crystal structures was discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Kiatkittipong, K., Scott, J., and Amal, R.: Hydrothermally synthesized titanate nanostructures: Impact of heat treatment on particle characteristics and photocatalytic properties. ACS Appl. Mater. Interfaces 3, 3988 (2011).CrossRefGoogle ScholarPubMed
Li, Y.F. and Liu, Z.P.: Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings. JACS 133, 15743 (2012).Google Scholar
Armstrong, A.R., Armstrong, G., Canales, J., Garcia, R., and Bruce, P.G.: Lithium-ion intercalation into TiO2-B nanowires. Adv. Mater. 17, 862 (2005).Google Scholar
Koudriachova, M.V.: Effect of particle size on the phase behavior of Li-intercalated TiO2-rutile. J. Power Sources 196, 6898 (2011).Google Scholar
Francioso, L., Taurino, A.M., Forleo, A., and Siciliano, P.: TiO2 nanowires array fabrication and gas sensing properties. Sens. Actuators, B 130, 70 (2008).CrossRefGoogle Scholar
Nair, A.S., Zhu, P.N., Babu, V.J., Yang, S.Y., and Ramakrishna, S.: Anisotropic TiO2 nanomaterials in dye-sensitized solar cells. Phys. Chem. Chem. Phys. 13, 21248 (2011).Google Scholar
Mao, Y.B. and Wong, S.S.: Size- and shape-dependent transformation of nanosized titanate into analogous anatase titania nanostructures. JACS 128, 8217 (2006).Google Scholar
Eder, D., Kinloch, I.A., and Windle, A.H.: Pure rutile nanotubes. Chem. Commun. 1448 (2006).Google Scholar
Chen, X.B. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).CrossRefGoogle ScholarPubMed
Shen, L.M., Bao, N.Z., Zheng, Y.Q., Gupta, A., An, T.C., and Yanagisawa, K.: Hydrothermal splitting of titanate fibers to single-crystalline TiO2 nanostructures with controllable crystalline phase, morphology, microstructure, and photocatalytic activity. J. Phys. Chem. C 112, 8809 (2008).Google Scholar
Li, Q.J., Zhang, J.W., Liu, B.B., Li, M., Liu, R., Li, X.L., Ma, H.L., Yu, S.D., Wang, L., Zou, Y.G., Li, Z.P., Zou, B., Cui, T., and Zou, G.T.: Synthesis of high-density nanocavities inside TiO2-B nanoribbons and their enhanced electrochemical lithium storage properties. Inorg. Chem. 47, 9870 (2008).Google Scholar
Wang, Q., Wen, Z.H., and Li, J.H.: Solvent-controlled synthesis and electrochemical lithium storage of one-dimensional TiO2 nanostructures. Chem. Mater. 19, 927 (2007).Google Scholar
Li, J.M., Wan, W., Zhou, H.H., Li, J.J., and Xu, D.S.: Hydrothermal synthesis of TiO2(B) nanowires with ultrahigh surface area and their fast charging and discharging properties in Li-ion batteries. Chem. Commun. 47, 3439 (2011).CrossRefGoogle ScholarPubMed
Mitoraj, D. and Kisch, H.: The nature of nitrogen-modified titanium dioxide photocatalysts active in visible light. Angew. Chem. Int. Ed. 47, 9975 (2008).Google Scholar
Park, J.H., Kim, S., and Bard, A.J.: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).CrossRefGoogle ScholarPubMed
Sudhagar, P., Asokan, K., Ito, E., and Kang, Y.S.: N-Ion-implanted TiO2 photoanodes in quantum dot-sensitized solar cells. Nanoscale 4, 2416 (2012).Google Scholar
Wu, Z.B., Dong, F., Zhao, W.R., Wang, H.Q., Liu, Y., and Guan, B.H.: The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity. Nanotechnology 20, 235701 (2009).CrossRefGoogle ScholarPubMed
Fu, L.J., Liu, H., Zhang, H.P., Li, C., Zhang, T., Wu, Y.P., and Wu, H.Q.: Novel TiO2/C nanocomposites for anode materials of lithium ion batteries. J. Power Sources 159, 219 (2006).CrossRefGoogle Scholar
Li, Q.J., Zhang, J.W., Liu, B.B., Li, M., Yu, S.D., Wang, L., Li, Z.P., Liu, D.D., Hou, Y.Y., Zou, Y.G., Zou, B., Cui, T., and Zou, G.T.: Synthesis and electrochemical properties of TiO2-B@C core-shell nanoribbons. Cryst. Growth Des. 8, 1812 (2008).Google Scholar
Zhang, J.W., Yan, X.X., Zhang, J.W., Cai, W., Wu, Z.S., and Zhang, Z.J.: Preparation and electrochemical performance of TiO2/C composite nanotubes as anode materials of lithium-ion batteries. J. Power Sources 198, 223 (2012).Google Scholar
Kukovecz, A., Hodos, A., Horvath, E., Radnoczi, G., Konya, Z., and Kiricsi, I.: Oriented crystal growth model explains the formation of titania nanotubes. J. Phys. Chem. B 109, 17781 (2005).CrossRefGoogle ScholarPubMed
Ilie, A., Durkan, C., Milne, W.I., and Welland, M.E.: Surface enhanced Raman spectroscopy as a probe for local modification of carbon films. Phys. Rev. B 66, 045412 (2002).CrossRefGoogle Scholar
Jiang, X.C., Wang, Y.L., Herricks, T., and Xia, Y.N.: Ethylene glycol-mediated synthesis of metal oxide nanowires. J. Mater. Chem. 14, 695 (2004).Google Scholar
Ren, L., Huang, X.T., Sun, F.L., and He, X.: Preparation and characterization of doped TiO2 nanodandelion. Mater. Lett. 61, 427 (2007).Google Scholar
Wei, M.D., Zhou, H.S., Konishi, Y., Ichihara, M., Sugiha, H., and Arakawa, H.: Synthesis of tubular titanate via a self-assembly and self-removal process. Inorg. Chem. 45, 5684 (2006).Google Scholar
Yoshida, R., Susuki, Y., and Yoshikawa, S.: Synthesis of TiO2(B) nanowires by hydrothermal and post-heat treatments. J. Solid State Chem. 178, 2179 (2005).Google Scholar
Pavasupree, S., Suzuki, Y., Yoshikawa, S., and Kawahata, R.: Synthesis of titanate, TiO2(B), and anatase TiO2 nanofibers from natural rutile sand. J. Solid State Chem. 178, 3110 (2005).CrossRefGoogle Scholar
Shanmugam, S., Gabashvili, A., Jacob, D.S., Yu, J.C., and Gedanken, A.: Synthesis and characterization of TiO2@C core-shell composite nanoparticles and evaluation of their photocatalytic activities. Chem. Mater. 18, 2275 (2006).CrossRefGoogle Scholar
Lin, L., Lin, W., Zhu, Y.X., Zhao, B.Y., Xie, Y.C., He, Y., and Zhu, Y.F.: Uniform carbon-covered titania and its photocatalytic property. J. Mol. Catal. A: Chem. 236, 46 (2005).Google Scholar