Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-26T06:45:37.107Z Has data issue: false hasContentIssue false

Synthesis of silicon-based polymerized films by excimer laser ablation deposition of hexaphenyldisilane

Published online by Cambridge University Press:  26 July 2012

Xiaoyan Zeng
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Fabrice Rossignol
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Shigeru Konno
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Hideaki Nagai
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Yoshinori Nakata
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Takeshi Okutani
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Masaaki Suzuki
Affiliation:
Hokkaido National Industrial Research Institute, 2–17-2-1, Tsukisamu-Higashi, Toyohira-ku, Sapporo 062-8517, Japan
Get access

Extract

A new method of synthesizing silicon-based polymer films by excimer laser ablation of hexaphenyldisilane (HPDS) has been studied. The polymerized films were formed on a substrate by laser ablation deposition of HPDS at 248 nm. The structure of the polymerized films depended strongly on the laser fluence and repetition rates. The thermal stability and hardness of the deposited films were estimated by thermogravimetry and a Vickers microhardness meter. The films showed good thermal stability, depending on the laser processing parameters.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lowndes, D.H., Geohegan, D.B., Puretzky, A.A., Norton, D.P., and Rouleau, C.M., Science 273, 898 (1996).CrossRefGoogle Scholar
2.Hansen, S. G. and Robitaille, T.E., Appl. Phys. Lett. 52, 81 (1988).CrossRefGoogle Scholar
3.Blanchet, G. G., Fisher, C. R. Jr., Jackson, C. L., Shah, S. I., and Gardner, K.H., Science 262, 719 (1993).CrossRefGoogle Scholar
4.Blanchet, G.B., Appl. Phys. Lett. 62, 479 (1993).CrossRefGoogle Scholar
5.Blanchet, G. B. and Shah, S. I., Appl. Phys. Lett. 62, 1026 (1993).CrossRefGoogle Scholar
6.Blanchet, G. B., Chemtech, June, 31 (1996).CrossRefGoogle Scholar
7.Luo, Q., Chen, X., Liu, Z., Sun, Z., and Ming, N., Appl. Surf. Sci. 108, 89 (1997).CrossRefGoogle Scholar
8.Norton, M. G., Jiang, W., Dickison, J. T., and Hipps, K. W., Appl. Surf. Sci. 96/98, 617 (1996).CrossRefGoogle Scholar
9.Ueno, Y., Fujii, T., and Kannari, F., Appl. Phys. Lett. 65, 1370 (1994).CrossRefGoogle Scholar
10.Fujii, T., Inoue, S., and Kannari, F., Appl. Surf. Sci. 96/98, 621 (1996).CrossRefGoogle Scholar
11.Nishio, S., Chiba, T., Matsuzaki, A., and Sato, H., Appl. Surf. Sci. 106, 132 (1996).CrossRefGoogle Scholar
12.Nishio, S., Chiba, T., Matsuzaki, A., and Sato, H., J. Appl. Phys. 79 (9) 71987204 (1996).CrossRefGoogle Scholar
13.Li, Z.F., Yang, Z. Y., and Xiao, R. F., J. Appl. Phys. 80, 5398 (1996).CrossRefGoogle Scholar
14.Inayoshi, M., Hori, M., and Goto, T., J. Vac. Sci. Technol. A14, 1981 (1996).CrossRefGoogle Scholar
15.Blanchet, G.B., Macromolecules 28, 4603 (1995).CrossRefGoogle Scholar
16.Magnera, T. F., Balaji, V., Michl, J., Miller, R. D., and Sooriyakumaran, R., Macromolecules 22, 16241635 (1989).CrossRefGoogle Scholar
17.Hansen, S. G. and Robitaille, T. E., J. Appl. Phys. 62 (4), 13941399 (1987).CrossRefGoogle Scholar
18.Marinero, E. E. and Miller, R. D., Appl. Phys. Lett. 50 (16), 10411043 (1987).CrossRefGoogle Scholar
19.Miller, R. D. and Michl, J., Chem. Rev. 89, 1359 (1989).CrossRefGoogle Scholar
20.Yajima, S., Hasegawa, Y., Okamura, K., and Matsuzawa, T., Nature 273, 525 (1978).CrossRefGoogle Scholar
21.Smith, A. L., The Analytical Chemistry of Silicones (Wiley-Interscience, New York, 1991).Google Scholar
22.West, R., David, L. D., Stearly, K. L., Srinvasin, K. S. V., and Yu, H., J. Am. Chem. Soc. 103, 7352 (1981).CrossRefGoogle Scholar
23.Sakamoto, K., Obata, K., Hirata, H., Nakajima, M., and Sakurai, H., J. Am. Chem. Soc. 111, 7641 (1989).CrossRefGoogle Scholar
24.Nagai, H., Nakata, Y., Suzuki, M., and Okutani, T., J. Mater. Sci. 33, 1897 (1998).CrossRefGoogle Scholar
25.Suzuki, M., Nakata, Y., Nagai, H., Goto, K., Nishimura, O., and Okutani, Takeshi, Mater. Sci. Eng. A 246, 36 (1998).CrossRefGoogle Scholar
26.Silverstein, R. M., Bassler, G. C., and Morrill, T. C., Spectrometric Identification of Organic Compounds, 4th ed. (John Wiley and Sons Inc., New York, 1981).Google Scholar
27.Srinivasan, R. and Baren, Bodil, Chem. Rev. 89, 1303 (1989).CrossRefGoogle Scholar
28.Kelly, R. and Miotello, A., in Pulsed Laser Deposition of Thin Films, edited by Chrisey, D. B. and Hubler, G. K. (John Wiley & Sons, Inc., New York, 1994), p. 55.Google Scholar
29.Horwitz, J. S. and Sprague, J. A., in Pulsed Laser Deposition of Thin Films, edited by D. B. Chrisey and G. K. Hubler (John Wiley & Sons, Inc., New York, 1994), p. 229.Google Scholar
30.Reyna, L. G. and Sobehart, J. R., J. Appl. Phys. 76, 3423 (1995).CrossRefGoogle Scholar
31.Blanchet, G. B., and Fisher, C. R. Jr., Appl. Phys. Lett. 68, 929 (1996).CrossRefGoogle Scholar
32.Tsunekawa, M., Nishio, S., and Sato, H., J. Appl. Phys. 76, 5598 (1994).CrossRefGoogle Scholar
33.Dyer, P. E., Karnakis, D. M., Oldershaw, G. A., and Roberts, G. C., J. Phys. D: Appl. Phys. 9, 2554 (1996).CrossRefGoogle Scholar
34.Krajnovich, D. J. and Vazquez, J. E., J. Appl. Phys. 73, 3001 (1993).CrossRefGoogle Scholar