Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T13:06:22.203Z Has data issue: false hasContentIssue false

Synthesis of perfect silver nanocubes by a simple polyol process

Published online by Cambridge University Press:  31 January 2011

Jiejun Zhu
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China; and Department of Applied Physics, Nanjing University of Technology, Nanjing 210009, People’s Republic of China
Caixia Kan
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
Xiaoguang Zhu
Affiliation:
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People’s Republic of China
Jian-guo Wan*
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
Min Han
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
Yue Zhao
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
Baolin Wang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
Guanghou Wang
Affiliation:
National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, People’s Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, we report on silver nanocubes with perfect shape prepared by a simple poly(vinyl pyrrolidone)-directed polyol synthesis process. The effects of poly(vinyl pyrrolidone)/AgNO3ratio Rand reaction temperature Ton the morphology and size of the products were investigated. Ag nanocubes with an average edge length of 230 nm were obtained successfully with sharp edges and corners under a precise synthesis condition of R= 1 and T= 150 °C. The optical properties of Ag nanocubes show an attractive plasma resonance red-shift with size in a wide spectra region. The growth mechanism of the Ag nanocubes is proposed to be thermodynamically and kinetically controlled.

Type
Articles
Copyright
Copyright © Materials Research Society2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Salzemann, C., Lisiecki, I., Brioude, A., Urban, J.Pileni, M-P.: Collections of copper nanocrystals characterized by different sizes and shapes: Optical response of these nano-objects. J. Phys. Chem. B 108, 13242 2004CrossRefGoogle Scholar
2Xia, Y., Yang, P., Sun, Y., Wu, Y., Mayers, B., Gates, B., Yin, Y., Kim, F., Yan, H.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003CrossRefGoogle Scholar
3Wang, Z.L., Ahmad, T.S.El-Sayed, M.A.: Steps, ledges and kinks on the surfaces of platinum nanoparticles of different shapes. Surf. Sci. 380, 302 1997CrossRefGoogle Scholar
4Beermann, J., Bozhevolnyi, S.I.Coello, V.: Modeling of nonlinear microscopy of localized field enhancements in random metal nanostructures. Phys. Rev. B 73, 115408 2006CrossRefGoogle Scholar
5Hao, E., Li, S., Bailey, R.C., Zou, S., Schatz, G.C.Hupp, J.T.: Optical properties of metal nanoshells. J. Phys. Chem. B 108, 1224 2004CrossRefGoogle Scholar
6Kelly, K.L., Coronado, E., Zhao, L.L.Schatz, G.C.: The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 2003CrossRefGoogle Scholar
7Baia, M., Baia, L., Astilean, S.Popp, J.: Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl. Phys. Lett. 88, 143121 2006CrossRefGoogle Scholar
8Schmidt, J.P., Cross, S.E.Buratto, S.K.: Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. J. Chem. Phys. 121, 10657 2004CrossRefGoogle ScholarPubMed
9Haes, A.J.Van Duyne, R.P.: A nanoscale optical biosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J. Am. Chem. Soc. 124, 10596 2002CrossRefGoogle ScholarPubMed
10Panacek, A., Kvitek, L., Prucek, R., Kolar, M., Vecerova, R., Pizurova, N., Sharma, V.K., Nevecna, T.Zboril, R.: Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 110, 16248 2006CrossRefGoogle ScholarPubMed
11Kottmann, J.P., Martin, O.J.F., Smith, D.R.Schultz, S.: Plasmon resonances of silver nanowires with a nonregular cross section. Phys. Rev. B 64, 235402 2001CrossRefGoogle Scholar
12Kottmann, J.P., Martin, O.J.F., Smith, D.R.Schultz, S.: Dramatic localized electromagnetic enhancement in plasmon resonant nanowires. Chem. Phys. Lett. 341, 1 2001CrossRefGoogle Scholar
13Sosa, I.O., Noguez, C.Barrera, R.G.: Optical properties of metal nanoparticles with arbitrary shapes. J. Phys. Chem. B 107, 6269 2003CrossRefGoogle Scholar
14Yang, W-H., Schatz, G.C.Van Duyne, R.P.: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J. Chem. Phys. 103, 869 1995CrossRefGoogle Scholar
15Zong, R-L., Zhou, J., Li, Q., Du, B., Li, B., Fu, M., Qi, X-W., Li, L-T.Buddhudu, S.: Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J. Phys. Chem. B 108, 16713 2004CrossRefGoogle Scholar
16Wiley, B., Sun, Y., Mayers, B.Xia, Y.: Shape-controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 11, 454 2005CrossRefGoogle ScholarPubMed
17Fievet, F., Lagier, J.P.Figlarz, M.: Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. MRS Bull. 14, 29 1989CrossRefGoogle Scholar
18Chen, J., Saeki, F., Wiley, B.J., Cang, H., Cobb, M.J., Li, Z-Y., Au, L., Zhang, H., Kimmey, M.B., Li, X.Xia, Y.: Gold nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano. Lett. 5, 473 2005CrossRefGoogle ScholarPubMed
19Chen, J., Wiley, B., McLellan, J., Xiong, Y., Li, Z-Y.Xia, Y.: Optical properties of Pd-Ag and Pt-Ag nanoboxes synthesized via galvanic replacement reactions. Nano. Lett. 5, 2058 2005CrossRefGoogle ScholarPubMed
20Yu, D.Yam, V.W-W.: Controlled synthesis of monodisperse silver nanocubes in water. J. Am. Chem. Soc. 126, 13200 2004CrossRefGoogle ScholarPubMed
21Sun, Y.Xia, Y.: Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 2002CrossRefGoogle ScholarPubMed
22Im, S.H., Lee, Y.T., Wiley, B.Xia, Y.: Large-scale synthesis of silver nanocubes: The role of HCl in promoting cube perfection and monodispersity. Angew. Chem. 117, 2192 2005CrossRefGoogle Scholar
23McLellan, J.M., Siekkinen, A., Chen, J.Xia, Y.: Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem. Phys. Lett. 427, 122 2006CrossRefGoogle Scholar
24Huang, H.H., Ni, X.P., Loy, G.L., Chew, C.H., Tan, K.L., Loh, F.C., Deng, J.F.Xu, G.Q.: Photochemical formation of silver nanoparticles in poly(N-vinylpyrrolidone). Langmuir 12, 909 1996CrossRefGoogle Scholar
25Chen, H., Gao, Y., Yu, H., Zhang, H., Liu, L., Shi, Y., Tian, H., Xie, S.Li, J.: Structural properties of silver nanorods with fivefold symmetry. Micron 35, 469 2004CrossRefGoogle ScholarPubMed
26Lee, Y.T., Im, S.H., Wiley, B.Xia, Y.: Quick formation of single-crystal nanocubes of silver through dual functions of hydrogen gas in polyol synthesis. Chem. Phys. Lett. 411, 479 2005CrossRefGoogle Scholar
27Sherry, L.J., Chang, S-H., Schatz, G.C., Van Duyne, R.P., Wiley, B.J.Xia, Y.: Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano. Lett. 5, 2034 2005CrossRefGoogle ScholarPubMed
28Wang, Z.L.: Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153 2000CrossRefGoogle Scholar
29Cleveland, C.L., Landman, U., Schaaff, T.G., Shafigullin, M.N., Stephens, P.W.Whetten, R.L.: Structural evolution of smaller gold nanocrystals: The truncated decahedral motif. Phys. Rev. Lett. 79, 1873 1997CrossRefGoogle Scholar
30Petroski, J.M., Wang, Z.L., Green, T.C.El-Sayed, M.A.: Kinetically controlled growth and shape formation mechanism of platinum nanoparticles. J. Phys. Chem. B 102, 3316 1998CrossRefGoogle Scholar
31Marks, L.D.: Experimental studies of small particle structures. Rep. Prog. Phys. 57, 603 1994CrossRefGoogle Scholar
32Ozmetin, C., Copur, M., Yartasi, A.Kocakerim, M.M.: Kinetic investigation of reaction between metallic silver and nitric acid solutions. Chem. Eng. Technol. 23, 707 20003.0.CO;2-L>CrossRefGoogle Scholar
33Bi, H., Cai, W., Kan, C.Zhang, L.: Optical study of redox process of Ag nanoparticles at high temperature. J. Appl. Phys. 92, 7491 2002CrossRefGoogle Scholar
34Sun, Y., Mayers, B., Herricks, T.Xia, Y.: Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano. Lett. 3, 955 2003CrossRefGoogle Scholar