Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-10T23:51:12.876Z Has data issue: false hasContentIssue false

Synthesis of NiSi2 by 6 MeV Ni implantation into silicon

Published online by Cambridge University Press:  31 January 2011

J. K. N. Lindner
Affiliation:
Institute of Physics, University of Dortmund, POB 500500, D-4600 Dortmund, Federal Republic of Germany
E. H. te Kaat
Affiliation:
Institute of Physics, University of Dortmund, POB 500500, D-4600 Dortmund, Federal Republic of Germany
Get access

Abstract

Six MeV high-dose Ni implantation into silicon has been applied to synthesize deep-buried metallic layers. These layers have been analyzed by optical reflectivity and spreading resistance depth profiling as well as transmission electron microscopy and cross-section transmission electron microscopy. Already in the as-implanted state, at target temperatures of 450 K and doses above 1017 Ni/cm2, epitaxial precipitates of NiSi2 are formed. They grow in type-A and type-B orientations. In addition to these polyhedral crystallites, thin NiSi2 platelets on {111} lattice planes exist. At a dose of 1.3 × 1018 Ni/cm2, a continuous but highly defective layer of epitaxial NiSi2 is formed by coalescence of mainly type-A precipitates at the maximum of the Ni profile. Investigations indicate that damage gettering of nickel atoms as well as the atomic density increase during implantation influence the depth distribution of implanted metal atoms. Moreover, a suppression of silicon amorphization by nickel is evident.

Type
Articles
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1White, A. E., Short, K. T., Dynes, R. C., Garno, J. P., and Gibson, J. M., Appl. Phys. Lett. 50, 95 (1987).CrossRefGoogle Scholar
2White, A. E., Short, K. T., Dynes, R. C., Gibson, J. M., and Hull, R., presented at the MRS Fall Meeting, Boston, 1987, to appear in Mater. Res. Soc. Symp. Proc. 100 and 107.Google Scholar
3Sanchez, F. H., Namavar, F., Budnick, J. I., Fasihudin, A., and Hayden, H. C., Mater. Res. Soc. Symp. Proc. 51, 439 (1986).CrossRefGoogle Scholar
4Namavar, F., Sanchez, F. H., Budnick, J. I., Fasihuddin, A. H., and Hayden, H. C., Mater. Res. Soc. Symp. Proc. 74, 487 (1987).CrossRefGoogle Scholar
5Campisi, G. J., Dietrich, H. B., Delfino, M., and Sadana, D. K., Mater. Res. Soc. Proc. 54, 747 (1986).CrossRefGoogle Scholar
6Petukhov, V. Yu., Khaibullin, I. B., and Zaripov, M. M., Phys. Chem. Mech. Surf. 4(2), 522 (1986).Google Scholar
7Petukhov, V. Yu., Khaibullin, I. B., Zaripov, M. M., Groetzschel, R., Voelskow, M., and Klabes, R., Phys. Status Solidi A 96, 463 (1986).CrossRefGoogle Scholar
8Petukhov, V. Yu., Khaibullin, I. B., Zaripov, M. M., Wieser, E., and Groetzschel, R., in Physical Research Vol. 8: Energy Pulse and Particle Beam Modification of Materials, edited by Hennig, K. (Akademie-Verlag, Berlin, 1988), p. 341343.CrossRefGoogle Scholar
9Salvi, V. P., Vidwans, S. V., Rangwala, A. A., Arora, B. M., , Kuldeep, and Jain, A. K., Nucl. Instrum. Methods B 28, 242 (1987).CrossRefGoogle Scholar
10Madakson, P. B., Clark, G. C., Leguoues, F., and Baglin, J. E. E., presented at the MRS Fall Meeting, Boston (1987).Google Scholar
11Lindner, J. K. N. and Kaat, E. te, in Ref. 8, pp. 155157.Google Scholar
12Lindner, K. N. and Kaat, E. te, Mater. Res. Soc. Symp. Proc. 102 and 107, 275 (1988).Google Scholar
13Tung, R. T., Gibson, J. M., and Levi, A. F. J., Appl. Phys. Lett. 48, 1264 (1986).CrossRefGoogle Scholar
14Bean, J. C. and Poate, J. M., Appl. Phys. Lett. 37, 643 (1980).CrossRefGoogle Scholar
15Hensel, J. C., Levi, A. F. J., Tung, R. T., and Gibson, J. M., Appl. Phys. Lett. 47, 151 (1985).CrossRefGoogle Scholar
16Heidemann, K. F., Philos. Mag. B 44(4), 465 (1981).CrossRefGoogle Scholar
17Dolata, R., Lindner, J. K. N., and Kaat, E. te, publication in preparation.Google Scholar
18Lindner, J. K. N., Domres, R., and Kaat, E. te, presented at the IBMM 88, Tokyo (1988); accepted for publication in Nucl. Instrum. Methods B.Google Scholar
19Ziegler, J. F., Biersack, J. P., and Littmark, U., in The Stopping and Range of Ions in Matter, edited by Ziegler, J. F. (Pergamon, New York, 1985), Vol. 1.Google Scholar
20Hecking, N., Heidemann, K. F., and Kaat, E. te, Nucl. Instrum. Methods B 15, 760 (1986).CrossRefGoogle Scholar
21Vook, F. L., in Radiation Damage and Defects in Semiconductors, edited by Whitehouse, J. E. (Institute of Physics, London, 1972), pp. 6071.Google Scholar
22Narayan, J., Fathy, D., Oen, O. S., and Holland, O. W., J. Vac. Sci. Technol. A 2, 1303 (1984).CrossRefGoogle Scholar
23Ishiwara, H., Hikosaka, K., and Furukawa, S., Appl. Phys. Lett. 32, 23 (1978).CrossRefGoogle Scholar
24Tsaur, B.-Y. and Anderson, C. H. Jr. , J. Appl. Phys. 53, 940 (1982).CrossRefGoogle Scholar
25Wittmer, M. and Tu, K. N., Phys. Rev. B 29, 2010 (1984).CrossRefGoogle Scholar
26Schonborn, A., Hecking, N., and Kaat, E. te, in Ref. 8, pp. 511513.Google Scholar
27Baglin, J., d'Heurle, F., and Petersson, S., in Thin Film Interfaces and Interactions, edited by Poate, J. and Baglin, J. (The Electrochemical Society, Princeton, NJ, 1980), p. 341.Google Scholar
28Hinkel, V., Sorba, L., Haak, H., Horn, K., and Braun, W., Appl. Phys. Lett. 50, 1257 (1987).CrossRefGoogle Scholar
29Mäenpää, M., Hung, L.S., Nicolet, M.-A., Sadana, D. K., and Lau, S. S., Thin Solid Films 87, 277 (1982).CrossRefGoogle Scholar
30Tung, R. T., Gibson, J. M., and Poate, J. M., Phys. Rev. Lett. 50, 429 (1983).CrossRefGoogle Scholar