Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T07:18:10.191Z Has data issue: false hasContentIssue false

Synthesis of nanotabular barium titanate via a hydrothermal route

Published online by Cambridge University Press:  01 April 2005

Timothy J. Yosenick
Affiliation:
NSF Particulate Materials Center, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
David V. Miller
Affiliation:
Bectel-Bettis, West Mifflin, Pennsylvania 15122
Rajneesh Kumar
Affiliation:
NSF Particulate Materials Center, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Jennifer A. Nelson
Affiliation:
NSF Particulate Materials Center, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Clive A. Randall
Affiliation:
NSF Particulate Materials Center, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
James H. Adair
Affiliation:
NSF Particulate Materials Center, Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

As layer thickness of multilayer ceramic capacitors decreases, nanoparticles of high dielectric materials, especially BaTiO3, are needed. Tabular metal nanoparticles produce thin metal layers with low surface roughness via electrophoretic deposition. To achieve similar results in dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. In the current study, the synthesis of BaTiO3 was investigated using a hydrothermal route. Transmission electron microscopy and atomic force microscpy analyses show that the synthesized particles are single crystal with a 〈111〉 zone axis and a median thickness of 5.8 nm and face diameter of 27.1 nm. Particle growth is likely controlled by the formation of {111} twins and the synthesis pH, which stabilizes the {111} face during growth. With limited growth in the 〈111〉 direction, the particles develop a platelike morphology. Physical property characterization shows the powder is of high purity with low hydrothermal defect concentrations and controlled stoichiometry.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Moulson, A.J. and Herbert, J.M.: Electroceramics; Materials, Properties, and Application, 1st ed. (Chapman & Hall, New York, 1990), p. 200.Google Scholar
2. Hennings, D.F.K., Schreinemacher, B.S. and Schreinemacher, H.: Solid-state preparation of BaTiO3-based dielectric using ultrafine raw materials. J. Am. Ceram. Soc. 84, 2777 (2001).CrossRefGoogle Scholar
3. Kimel, R.A., Ganine, V. and Adair, J.H.: Double injection synthesis and dispersion of submicrometer barium titanyl oxalate tetrahydrate. J. Am. Ceram. Soc. 84, 1172 (2001).CrossRefGoogle Scholar
4. Wada, S., Tsurumi, T., Chikamori, H., Noma, T. and Suzuki, T.: Preparation of nm-sized BaTiO3 crystallites by a LTDS method using a highly concentrated aqueous solution. J. Cryst. Growth 229, 433 (2001).CrossRefGoogle Scholar
5. Kim, B.K., Lim, D.Y., Riman, R.E., Nho, J.S. and Cho, S.B.: A new glycothermal process for barium titanate nanoparticle synthesis. J. Am. Ceram. Soc. 86, 1793 (2003).CrossRefGoogle Scholar
6. Kamiya, H., Gomi, K., Iida, Y., Tanaka, K., Yoshiyasu, T. and Kakiuchi, T.: Preparation of highly dispersed ultrafine barium titanate powder by using microbial-derived surfactant. J. Am. Ceram. Soc. 86, 2011 (2003).CrossRefGoogle Scholar
7. Gherardi, P. and Matijevic, E.: Homogeneous precipitation of spherical colloidal barium titanate particles. Colloid Surf. 32, 257 (1988).CrossRefGoogle Scholar
8. Adair, J.H. and Suvaci, E.: Submicron electroceramic powder by hydrothermal synthesis, in Encyclopedia of Materials: Science and Technology, edited by Buschow, K.H.J., Cahn, R.W., Flemings, M.C., Ilschner, B., Kramer, E.J., and Mahajan, S. (Elsevier Science Ltd., Oxford, U.K., 2003), p. 8933.Google Scholar
9. Yener, D.O., Yosenick, T.J., Randall, C.A. and Adair, J.H.: Synthesis of nanosized Ag/Pd platelets in self-assembled bilayers, and thin film metallization by electrophoretic deposition. (2005, unpublished).Google Scholar
10. Moon, J., Carasso, M.L., Krarup, H.G., Kerchner, J.A. and Adair, J.H.: Particle-shape control and formation mechanism of hydrothermally derived lead titanate. J. Mater. Res. 14, 866 (1999).CrossRefGoogle Scholar
11. Cho, S.B., Oledzka, M. and Riman, R.E.: Hydrothermal synthesis of acicular lead zirconate titanate (PZT). J. Cryst. Growth 226, 313 (2001).CrossRefGoogle Scholar
12. Bagwell, R.B., Sindel, J. and Singmund, W.: Morphological evolution of barium titanate synthsized in water in the presence of polymeric species. J. Mater. Res. 14, 1844 (1999).CrossRefGoogle Scholar
13. Zhao, L., Chen, A.T., Lange, F.F. and Speck, J.S.: Microstructural development of BaTiO3 powders synthesized by aqueous methods. J. Mater. Res. 11, 1325 (1996).CrossRefGoogle Scholar
14. Miller, D.V.: Synthesis and properties of barium titanate nanocomposites. Ph.D. Thesis, The Pennsylvania State University, University Park, PA, 1991.Google Scholar
15. Hennings, D.F.K. and Schreinemacher, S.: Characterization of hydrothermal barium titanate. J. Eur. Ceram. Soc. 9, 41 (1992).CrossRefGoogle Scholar
16. Yuan, Y., Yosenick, T.J., and Adair, J.H. (2004, unpublished).Google Scholar
17. Hung, K.M., Yang, W.D. and Huang, C.C.: Preparation of nanometer-sized barium titanate powders by a sol-precipitation process with surfactants. J. Euro. Ceram. Soc. 23, 1901 (2003).CrossRefGoogle Scholar
18. Noma, T., Wada, S., Yano, M. and Suzuki, T.: Analysis of lattice vibration in fine particles of barium titanate single crystal including lattice hydroxyl group. J. Appl. Phys. 80, 5223 (1996).CrossRefGoogle Scholar
19. Walton, R.I., Millange, D., Smith, R.I., Hansen, T.C. and O’Hare, D.: Real time observation of the hydrothermal crystallization of barium titanate using in-situ neutron powder diffraction. J. Am. Chem. Soc. 123, 12547 (2001).CrossRefGoogle ScholarPubMed
20. Schmelz, H. and Thomann, H.: Twinning in BaTiO3 ceramics. Ceram. For. Int. 61, 199 (1984).Google Scholar
21. Hartman, P. and Perdok, W.G.: On the relations between structure and morphology of crystals. I. Acta Crystallogr. 8, 49 (1955).CrossRefGoogle Scholar
22. Tani, T., Xu, Z. and Payne, D.: Preferred orientations for sol-gel derived PLZT thin layers, in Ferroelectric Thin Films III, edited by Meyers, E.R., Tuttle, B.A., Desu, S.B., and Larsen, P.K. (Mater. Res. Soc. Symp. Proc. 310, Warrendale, PA, 1993), p. 269.Google Scholar
23. Remeika, J.P.: Method of growing barium titanate single crystals. J. Am. Chem. Soc. 76, 940 (1954).CrossRefGoogle Scholar
24. Nielsen, J.W., Linares, R.C. and Koonce, S.E.: Genesis of the barium titanate butterfly twin. J. Am. Ceram. Soc. 45, 12 (1962).CrossRefGoogle Scholar
25. Jiang, B., Peng, J.L., Bursill, L.A., Ren, T.L., Zhang, P.L. and Zhong, W.L.: Defect structure and physical properties of barium titanate ultra-fine particles. Physica B 291, 1203 (2000).CrossRefGoogle Scholar
26. Hennings, D.F.K., Metzmacher, C. and Schreinemacher, B.S.: Defect chemistry and microstructure of hydrothermal barium titanate. J. Am Ceram. Soc. 84, 179 (2001).CrossRefGoogle Scholar
27. Lee, J.K., Hong, K.S. and Jang, J.W.: Roles of Ba/Ti ratios in the dielectric properties of BaTiO3 ceramics. J. Am. Ceram. Soc. 84, 209 (2001).Google Scholar