Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-29T17:35:43.720Z Has data issue: false hasContentIssue false

Synthesis of nanophase silicon, carbon, and silicon carbide powders using a plasma expansion process

Published online by Cambridge University Press:  03 March 2011

N. Rao
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
B. Micheel*
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
D. Hansen
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
C. Fandrey
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
M. Bench
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
S. Girshiek
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
J. Heberlein
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
P. McMurry
Affiliation:
University of Minnesota, Minneapolis, Minnesota 55455
*
a)Currently at Trinity Consultants, Inc., Overland Park, Kansas 66210.
Get access

Abstract

Nanophase powders of Si, C, and SiC with narrow size distributions are synthesized by dissociating reactants in a dc are plasma and quenching the hot gases in a subsonic nozzle expansion. The plasma is characterized by calorimetric energy balances and the powders by on-line aerosol measurcment techniques and conventional materials analysis. The measured nozzle quench rate is about 5 × 106 K/s. The generated particles have number mean diameters of about 10 nm or less, with Si forming relatively dense, coalesced particles, while SiC forms highly aggregated particles. Our data suggest that SiC particle formation is initiated by the nucleation of small silicon particles.

Type
Articles
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Siegel, R. W., Mater. Sci. Eng. A168, 189 (1993).CrossRefGoogle Scholar
2Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
3Nieman, G. W., Weertman, J. R., and Siegel, R. W., J. Mater. Res. 6, 1012 (1991).CrossRefGoogle Scholar
4Karch, J., Birringer, R., and Gleiter, H., Nature 330, 556 (1987).CrossRefGoogle Scholar
5Beck, D. D. and Siegel, R. W., J. Mater. Sci. 7, 2840 (1992).Google Scholar
6Klabunde, K. J. and Tanaka, Y., J. Mol. Catalysis 21, 57 (1983).CrossRefGoogle Scholar
7Rossetti, R., Ellison, J. L., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 80, 4464 (1984).CrossRefGoogle Scholar
8Nagarajan, R. and Chattopadhay, K., Acta Metall. Mater. 42, 947 (1994).CrossRefGoogle Scholar
9Christman, T. and Jain, M., Scripta Metall. et Mater. 25, 767 (1991).CrossRefGoogle Scholar
10Gurav, A., Kodas, T., Pluym, T., and Xiong, Y., Aerosol Sci. Technol. 19, 411 (1993).CrossRefGoogle Scholar
11Granqvist, C. G. and Buhrman, R. A., J. Appl. Phys. 47, 2200 (1976).CrossRefGoogle Scholar
12Hahn, H. and Averback, R. S., J. Appl. Phys. 67, 1113 (1990).CrossRefGoogle Scholar
13Akhtar, M. K., Pratsinis, S. E., and Mastrangelo, S.V. R., J. Am. Ceram. Soc. 75, 3408 (1992).CrossRefGoogle Scholar
14Kong, P. C. and Pfender, E., in Plasma Processing and Synthesis of Materials, edited by Apelian, D. and Szekely, J. (Mater. Res. Soc. Symp. Proc. 98, Pittsburgh, PA, 1987), pp. 377384.Google Scholar
15Girshick, S. L., Chiu, C-P., Muno, R., Wu, C. Y., Yang, L., Singh, S. K., and McMurry, P.H., J. Aerosol Sci. 24, 367 (1993).CrossRefGoogle Scholar
16Young, R. M. and Pfender, E., Plasma Chem. Plasma Process. 5, 1 (1985).CrossRefGoogle Scholar
17Flint, J. H., Marra, R. A., and Haggerty, J. S., Aerosol Sci. Technol. 5, 249 (1986).CrossRefGoogle Scholar
18Girshick, S. L. and Chiu, C-P., Plasma Chem. Plasma Process. 9, 355 (1989).CrossRefGoogle Scholar
19Yoshida, T., in Combustion and Plasma Synthesis of High Temperature Materials, edited by Munir, Z. A. and Holt, J. B. (VCH Publishers, New York, 1990), p. 328.Google Scholar
20Kodas, T. T. and Friedlander, S. K., AIChE J. 34(4), 551557 (1988).CrossRefGoogle Scholar
21Rao, N., Girshick, S., Heberlein, J., McMurry, P., Bench, M., Jones, S., Hansen, D., and Micheel, B., Plasma Chem. Plasma Proc. (1995, in press).Google Scholar
22Wang, S. C. and Flagan, R. C., Aerosol Sci. Technol. 13, 230 (1990).CrossRefGoogle Scholar
23Fernandez de la Mora, J., Hering, S. V., Rao, N., and McMurry, P. H., J. Aerosol. Sci. 21, 169 (1990).CrossRefGoogle Scholar
24Liu, B. Y. H. and Pui, D. Y. H., J. Colloid. Interface Sci. 47, 155 (1974).CrossRefGoogle Scholar
25Stolzenburg, M. and McMurry, P. H., Aerosol Sci. Technol. 14, 48 (1991).CrossRefGoogle Scholar
26Weidensohler, A. and Fissan, H. J., Aerosol Sci. Technol. 14, 358 (1991).CrossRefGoogle Scholar
27Reineking, A. and Porstendorfer, J., Aerosol Sci. Technol. 5, 483 (1986).CrossRefGoogle Scholar
28Kesten, J., Reineking, A., and Porstendorfer, J., Aerosol Sci. Technol. 15, 107 (1991).CrossRefGoogle Scholar
29Kelly, W. P. and McMurry, P. H., Aerosol Sci. Technol. 17, 199 (1992).CrossRefGoogle Scholar
30Hering, S. V. and Stolzenburg, M. R., J. Aerosol Sci. (1994, in press).Google Scholar
31Kutz, S. and Schmidt-Ott, A., J. Aerosol Sci. 21, S47 (1990).CrossRefGoogle Scholar
32Dahneke, B. E., J. Aerosol Sci. 4, 147 (1973).CrossRefGoogle Scholar
33Vaben, R. and Stover, D., J. Mater Sci. 29, 3791 (1994).CrossRefGoogle Scholar
34Kim, Y-W., Lin, H. H., and Kelly, T. F., Acta. Metall. 37, 247 (1989).CrossRefGoogle Scholar
35Lucovsky, G., J. Non-Cryst. Solids 141, 241 (1992).CrossRefGoogle Scholar
36Koch, W. and Friedlander, S. K., Part. Part. Syst. Charact. 8, 86 (1991).CrossRefGoogle Scholar
37Wu, M. K., Windeler, R. S., Steiner, C.K. R., Bors, T., and Friedlander, S. K., Aerosol Sci. Technol. 19, 527 (1993).CrossRefGoogle Scholar
38Chua, L. P. and Antonia, R. A., Int. J. Heat Mass Transfer 33, 331 (1990).CrossRefGoogle Scholar
39Greskovich, C. and Rosolowski, J. H., J. Am. Ceram. Soc. 59, 336 (1976).CrossRefGoogle Scholar
40Coblenz, W. S., J. Mater. Sci. 25, 2754 (1990).CrossRefGoogle Scholar
41Robertson, W. M., J. Am. Ceram. Soc. 64, 9 (1981).CrossRefGoogle Scholar
42Mezey, L. Z. and Griber, J., Surf. Sci. 117, 220 (1982).CrossRefGoogle Scholar
43Delattre, P. and Friedlander, S. K., Ind. Eng. Chem. Fundam. 17, 189 (1978).CrossRefGoogle Scholar
44Hong, J. D., Hon, M. H., and Davis, R. F., Mater. Sci. Monogr. 6, 409 (1980).Google Scholar
45Goldstein, A. N., Echer, C. M., and Alivisatos, A. P., Science 256, 1425 (1992).CrossRefGoogle Scholar
46Baumgartner, H. R. and Rossing, B. R., Silicon Carbide '87, edited by Cawley, J.D. and Semler, C. E., Proc. Silicon Carbide 1987 Symposium, Columbus, OH, Aug. 2–5 (1987).Google Scholar