Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T17:21:45.617Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline manganese oxide powders: Influence of hydrogen peroxide on particle characteristics

Published online by Cambridge University Press:  31 January 2011

Jooho Moon
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462, Japan
Masanobu Awano
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462, Japan
Hiroyoshi Takagi
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462, Japan
Yoshinobu Fujishiro
Affiliation:
National Industrial Research Institute of Nagoya, Nagoya 462, Japan
Get access

Abstract

Nanocrystalline manganese oxide powders have been prepared at 25 °C by precipitation from Mn(NO3)2 aqueous solution. The presence and addition sequence of H2O2 significantly influence particle characteristics of the resulting manganese oxides, including crystal structure, particle size and morphology, and surface area, depending upon molar ratio of H2O2 with respect to Mn. The precipitation from preoxidized manganese solution by H2O2 results in flakelike-shaped amorphous hydrous manganese oxide (MnO2xH2O). In the absence of H2O2, on the other hand, amorphous Mn(OH)2 is obtained, and a part of Mn(OH)2 subsequently transforms into crystalline Mn3O4 by oxidation in air. Relative population of amorphous Mn(OH)2 decreases by dissolution when post-treated with H2O2. At Mn:H2O2 = 1:4, the well-defined 16-nm-sized nanocrystalline Mn3O4 with homogenous particle morphology is prepared. The treatment with excess H2O2, however, destroys crystalline Mn3O4 and leads to further oxidation of the aqueous manganese species. Under these conditions, a mixture of needlelike Mn2O3 and cubelike Mn3O4, including amorphous MnO2xH2O, is obtained.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Yamashita, T. and Vannice, A., J. Catal. 161, 254 (1996).CrossRefGoogle Scholar
2.Sanchez, L., Farcy, J., Pereira-Ramos, J-P., Hernan, L., Morales, J., and Tirado, J.L., J. Mater. Chem. 6, 37 (1996).CrossRefGoogle Scholar
3.Pankov, V.V., Ceram. Int. 14, 87 (1988).CrossRefGoogle Scholar
4.Hare, C.H. and Fernald, M.G., Modern Paint Coat. 74, 40 (1984).Google Scholar
5.Hara, T., Tomisawa, T., Kurosu, T., and Doy, T.K., J. Electrochem. Soc. 146, 2333 (1999).CrossRefGoogle Scholar
6.Arimoto, Y., Nakamura, K., Hanawa, K., Hatada, A., Kishii, S., Suzuki, R., and Urda, N., European Patent No. EP0816457 (7 Jan 1998).Google Scholar
7.Hanawa, K., Suzuoka, K., Kato, K., and Sukaue, T., Boundary 14, 8 (1998) (in Japanese).Google Scholar
8.Zhang, G., Burdick, G., Dai, F., Bibby, T., and Beaudoin, S., Thin Solid Films 332, 379 (1998).CrossRefGoogle Scholar
9.Brock, S.L., Duan, N., Tian, Z.R., Giraldo, O., Zhou, H., and Suib, S.L., Chem. Mater. 10, 2619 (1998).CrossRefGoogle Scholar
10.Bach, S., Henry, M., Baffier, N., and Livage, J., J. Solid State Chem. 88, 325 (1990).CrossRefGoogle Scholar
11.Luo, J. and Suib, S.L., J. Phys. Chem. B 101, 10403 (1997).CrossRefGoogle Scholar
12.Feng, Q., Yanagisawa, K., and Yamasaki, N., J. Porous Mater. 5, 153 (1998).CrossRefGoogle Scholar
13.Ardizzone, A., Bianchi, C.L., and Tirelli, D., Colloid Surf. 134, 305 (1998).CrossRefGoogle Scholar
14.Haq, I.U. and Matijević, E., J. Colloid Interface Sci. 192, 104 (1997).CrossRefGoogle Scholar
15.Zhiwen, C., Shuyuan, Z., Shun, T., Fanqing, L., Jian, W., Sizhao, J., and Yuheng, Z., J. Cryst. Growth 180, 280 (1997).CrossRefGoogle Scholar
16.Kanungo, S.B., J. Chem. Tech. Biotechnol. 50, 91 (1991).CrossRefGoogle Scholar
17.Liu, Y.P., Qian, Y.T., Zhang, Y.H., Zhang, M.W., Wang, C.S., and Yang, L., Mater. Res. Bull. 32, 1055 (1997).CrossRefGoogle Scholar
18.Dhas, N.A., Koltypin, Y., and Gedanken, A., Chem. Mater. 9, 3159 (1998).CrossRefGoogle Scholar
19.Weixin, Z., Cheng, W., Xiaoming, Z., Yi, X., and Yitai, Q., Solid State Ionics 117, 331 (1999).CrossRefGoogle Scholar
20.Kanungo, S.B., Parida, K.M., and Sant, B.R., Electrochim. Acta 26, 1147 (1981).CrossRefGoogle Scholar
21.Nesbitt, H.W. and Banerjee, D., Am. Mineral. 83, 305 (1998).CrossRefGoogle Scholar
22.Davies, S.H.R and Morgan, J.J., J. Colloid Interface Sci. 129, 63 (1989).CrossRefGoogle Scholar
23.Murry, J.W., J. Colloid Interface Sci. 46, 357 (1974).CrossRefGoogle Scholar
24.Kanungo, S.B., Parida, K.M., and Sant, B.R., Electrochim. Acta 26, 1157 (1981).CrossRefGoogle Scholar
25.Fritsch, S. and Navrotsky, A., J. Am. Ceram. Soc. 79, 1761 (1996).CrossRefGoogle Scholar