Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-09T21:06:36.777Z Has data issue: false hasContentIssue false

Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process

Published online by Cambridge University Press:  31 January 2011

Mario F. Bianchetti
Affiliation:
PRINSO (Programa de Investigaciones en Sólidos), CITEFA-CONICET-UNSAM, J.B. de La Salle 4397, (1603) Villa Martelli, Pcia. de Buenos Aires, Argentina
Ricardo E. Juárez
Affiliation:
PRINSO (Programa de Investigaciones en Sólidos), CITEFA-CONICET-UNSAM, J.B. de La Salle 4397, (1603) Villa Martelli, Pcia. de Buenos Aires, Argentina
Diego G. Lamas
Affiliation:
PRINSO (Programa de Investigaciones en Sólidos), CITEFA-CONICET-UNSAM, J.B. de La Salle 4397, (1603) Villa Martelli, Pcia. de Buenos Aires, Argentina
Noemí E. Walsöe de Reca
Affiliation:
PRINSO (Programa de Investigaciones en Sólidos), CITEFA-CONICET-UNSAM, J.B. de La Salle 4397, (1603) Villa Martelli, Pcia. de Buenos Aires, Argentina
Lidia Pérez
Affiliation:
Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Gral. Paz 1499, (1650) San Martín, Pcia. de Buenos Aires, Argentina
Edgardo Cabanillas
Affiliation:
Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, Gral. Paz 1499, (1650) San Martín, Pcia. de Buenos Aires, Argentina
Get access

Abstract

In this work, the synthesis of CeO2–10 mol% Y2O3 powders by a nitrate–glycine gel-combustion route was investigated. Special attention was given to the influence of the glycine/metal ratio and calcination temperature on powder morphology. In contrast to the usual reported behavior, the best powder properties (crystallite size, 4.5–7 nm; specific surface area; 25–40 m2/g) were obtained for slow combustion processes with glycine/metal ratios of 1.5–2, whereas energetic reactions resulted in large crystallite and particle sizes. Furthermore, it was found that the crystallite size increases considerably even at moderate calcination temperatures (350–550 °C), showing the high reactivity of these nanopowders.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Eguchi, K., Seetoguchi, T., Inoue, T., and Arai, H., Solid State Ionics 52, 165 (1992).CrossRefGoogle Scholar
2.Maricle, D.L., Swarr, T.E., and Karavolis, S., Solid State Ionics 52, 173 (1992).CrossRefGoogle Scholar
3.Inaba, H. and Togawa, H., Solid State Ionics 83, 1 (1996).CrossRefGoogle Scholar
4.Milliken, C., Guruswamy, S., and Khandkar, A., J. Electrochem. Soc. 146, 872 (1999).CrossRefGoogle Scholar
5.Murray, E. Perry, Sai, T., and Barnett, S.A., Nature 400, 649 (1999).CrossRefGoogle Scholar
6.Park, S., Vohs, J.M., and Gorte, R.J., Nature 404, 265 (2000).CrossRefGoogle Scholar
7.herle, J. Van, Horita, T., Kawada, T., Sakai, N., Yokokawa, H., and Dokiya, M., J. Am. Ceram. Soc. 80, 933 (1997).CrossRefGoogle Scholar
8.Higashi, K., Sonoda, K., Ono, H., Sameshima, S., and Hirata, Y., J. Mater. Res. 14, 957 (1999).CrossRefGoogle Scholar
9.Li, L., Lin, X., Li, G., and Inomata, H., J. Mater. Res. 16, 3207 (2001).CrossRefGoogle Scholar
10.Hirano, M. and Kato, E., J. Am. Ceram. Soc. 82, 786 (1999).CrossRefGoogle Scholar
11.Shuk, P. and Greenblatt, M., Solid State Ionics 116, 217 (1999).CrossRefGoogle Scholar
12.Chick, L.A., Pederson, L.R., Maupin, G.D., Bates, J.L., Thomas, L.E., and Exarthos, G.J., Mater. Lett. 10, 6 (1990).CrossRefGoogle Scholar
13.Pederson, L.R., Maupin, G.D., Weber, W.J., McReady, D.J., and Stephens, R.W., Mater. Lett. 10, 437 (1991).CrossRefGoogle Scholar
14.Bates, J.L., Chick, L.A., and Weber, W.J., Solid State Ionics 52, 235 (1992).Google Scholar
15.Shin, H.C., Lee, K.R., Park, S., Jung, C.H., and Kim, S.J., Jpn. J. Appl. Phys. 35, L996 (1996).CrossRefGoogle Scholar
16.Lamas, D.G., Lascalea, G.E., and Reca, N.E. Walsöe de, J. Eur. Ceram. Soc. 18, 1217 (1998).CrossRefGoogle Scholar
17.Chou, Y-S., Stevenson, J.W., Armstrong, T.R., Hardy, J.S., Hasinska, K., Pederson, L.R., J. Mater. Res. 15, 1505 (2000).CrossRefGoogle Scholar
18.Chou, Y-S., Kerstetter, K., Pederson, L.R., Williford, R.E., J. Mater. Res. 16, 3545 (2001).CrossRefGoogle Scholar
19.Kim, S-J., Lee, W., Lee, W-J., Park, S.D., Song, J.S., Lee, E.G., J. Mater. Res. 16, 3621 (2001).CrossRefGoogle Scholar
20.Lamas, D.G., Juárez, R.E., Lascalea, G.E., and Reca, N.E. Walsöe de, J. Mater. Sci. Lett. 20, 1447 (2001).CrossRefGoogle Scholar
21.Schäfer, J., Sigmund, W., Roy, S., Aldinger, F., J. Mater. Res. 12, 2518 (1997).CrossRefGoogle Scholar
22.Lamas, D.G., Juárez, R.E., Caneiro, A., and Reca, N.E. Walsöe de, NanoStruct. Mater. 10, 1199 (1998).CrossRefGoogle Scholar
23.Fraigi, L.B., Lamas, D.G., and Reca, N.E. Walsöe de, Nanostruct. Mater. 11, 311 (1999).CrossRefGoogle Scholar
24.Roy, S., Sigmund, W., and Aldinger, F., J. Mater. Res. 14, 1524 (1999).CrossRefGoogle Scholar
25.Juárez, R.E., Lamas, D.G., Lascalea, G.E., and Reca, N.E. Walsöe de, J. Eur. Ceram. Soc. 20, 133 (2000).CrossRefGoogle Scholar
26.Varma, H.K., Mukundan, P., Warrier, K.G.K., and Domodaran, A.D., J. Mater. Sci. Lett. 9, 377 (1990).CrossRefGoogle Scholar
27.Sekar, M.M.A., Manoharan, S.S., and Patil, K.C., J. Mater. Sci. Lett. 9, 1205 (1990).CrossRefGoogle Scholar
28.Zhou, E., Bhaduri, S., and Bhaduri, S.B., Ceram. Eng. Sci. Proc. 18, 653 (1997).CrossRefGoogle Scholar
29.Badhuri, S. and Bhaduri, S.B., Nanostruct. Mater. 8, 755 (1997).CrossRefGoogle Scholar
30.Klug, H. and Alexander, L., in X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials (John Wiley, New York, 1974), pp. 618, 708.Google Scholar