Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-24T13:00:31.237Z Has data issue: false hasContentIssue false

Synthesis of hierarchical zinc oxide nanotubes

Published online by Cambridge University Press:  31 January 2011

Hansoo Kim
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Wolfgang M. Sigmund
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, Florida 32611
Get access

Abstract

In this paper, we report on the synthesis and structure of hierarchical zinc oxide nanotubes. Hierarchical nanotubes grown by physical vaporization of zinc in the presence of a catalyst were decorated with many secondary zinc oxide nanorods on the outer surface. The axis of these nanotubes with an average diameter of 65 nm was aligned along the c axis of wurtzite zinc oxide. The hierarchical zinc oxide nanotubes, many of which were single crystals, were transparent or opaque, depending on whether they had a zinc layer inside. The opaque nanotubes showed an abrupt change in electronic transmittance during investigation with transmission electron microscopy. The unique structure of the hierarchical ZnO nanotubes and the quantum effect resulting from the reduced dimension will modify the original properties of ZnO, leading to novel applications.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., Nature 354, 56 (1991).CrossRefGoogle Scholar
2.Chopra, N.G., Luyken, R.J., Cherrey, K., Crespi, V.H., Cohen, M.L., Louie, S.G., and Zettl, A., Science 269, 966 (1995).CrossRefGoogle Scholar
3.Hacohen, Y.R., Grunbaum, E., Tenne, R., Sloan, J., and Hutchison, J.L., Nature 395, 336 (1998).CrossRefGoogle Scholar
4.Tenne, R., Margulis, L., Genut, M., and Hodes, G., Nature 360, 444 (1992).CrossRefGoogle Scholar
5.Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demsar, J., Stadelmann, P., Lévy, F., and Mihailovic, D., Science 292, 479 (2001).CrossRefGoogle Scholar
6.Gong, D., Grimes, C.A., Varghese, O.K., Chen, Z., Hu, W., and Dickey, E.C., J. Mater. Res. 16, 3331 (2001).Google Scholar
7.Sun, Y., Mayers, B.T., and Xia, Y., Nano Lett. 2, 481 (2002).CrossRefGoogle Scholar
8.Huang, M.H., Mao, S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E., Russo, R., and Yang, P., Science 292, 1897 (2001).CrossRefGoogle Scholar
9.Suyama, Y., Tomokiyo, Y., Manabe, T., and Tanaka, E., J. Am. Ceram. Soc. 71, 391 (1988).CrossRefGoogle Scholar
10.Madler, L., Stark, W.J., and Pratsinis, S.E., J. Appl. Phys. 92, 6537 (2002).CrossRefGoogle Scholar
11.Williams, D.B. and Carter, C.B., Transmission Electron Microscopy (Plenum, New York, 1996).Google Scholar
12.Wu, J., Liu, S., Wu, C., Chen, K., and Chen, L., Appl. Phys. Lett. 81, 1312 (2002).CrossRefGoogle Scholar
13.Yan, Y., Liu, P., Romero, M.J., and Aljassim, M.M., J. Appl. Phys. 93, 4807 (2003).CrossRefGoogle Scholar
14.Bragg, W.L. and Darbyshire, J.A., Trans. Faraday Soc. 28, 522 (1932).CrossRefGoogle Scholar
15.Bates, C.H., White, W.B., and Roy, R., Science 137, 993 (1962).CrossRefGoogle Scholar
16.Aoki, T., Hatanaka, Y., Look, D.C., Appl. Phys. Lett. 76, 3257 (2000).CrossRefGoogle Scholar
17.Ohta, H., Kawamura, K., Orita, M., and Hirano, M., Appl. Phys. Lett. 77, 475 (2000).CrossRefGoogle Scholar
18.Yamaguchi, Y., Yamazaki, M., Yoshihara, S., and Shirakashi, T., J. Electroanal. Chem. 442, 1 (1998).Google Scholar
19.Wang, Z. and Li, H.L., Appl. Phys. A 74, 201 (2002).CrossRefGoogle Scholar
20.Hu, J.Q., Li, Q., Meng, X.M., Lee, C.S., and Lee, S.T., Chem. Mater. 15, 305 (2003).CrossRefGoogle Scholar
21.Electronic Ceramics, edited by Steele, B.C.H. (Elsevier, London, U.K., 1991).Google Scholar
22.Giancaterina, S., Amor, S. Ben, Baud, G., Gardette, J.L., Jacquet, M., Perrin, C., and Rivaton, A., Polymer 43, 6397 (2002).CrossRefGoogle Scholar
23.Sharma, R.B., J. Appl. Phys. 41, 1866 (1970).CrossRefGoogle Scholar
24.Vayssieres, L., Keis, K., Hagfeldt, A., and Lindquist, S., Chem. Mater. 13, 4395 (2001).CrossRefGoogle Scholar
25.Lyu, S.C., Zhang, Y., Ruh, H., Lee, H., Shim, H., Suh, E., and Lee, C.J., Chem. Phys. Lett. 363, 134 (2002).Google Scholar
26.Kim, H. and Sigmund, W., Appl. Phys. Lett. 81, 2085 (2002).Google Scholar