Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T19:53:06.088Z Has data issue: false hasContentIssue false

Synthesis of gold colloids by laser ablation in thiol-alkane solutions

Published online by Cambridge University Press:  01 October 2004

Giuseppe Compagnini*
Affiliation:
Chemistry Department, Catania University, 6 Catania 95125, Italy
A. Alessandro Scalisi
Affiliation:
Chemistry Department, Catania University, 6 Catania 95125, Italy
Orazio Puglisi
Affiliation:
Chemistry Department, Catania University, 6 Catania 95125, Italy
Corrado Spinella
Affiliation:
IMM-CNR, 95100 Catania, Italy
*
a)Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

In this paper, we present a study on the formation of gold colloids by laser ablation of a gold metal target in alkanes and thiol-alkane solutions. The results show a decrease of the gold particles’ size up to 2 nm when thiol molecules are present in the liquid environment. The observation of a blue-shift of the surface plasmon resonance is discussed together with transmission electron microscopy analyses accounting the cluster size decrease and the stabilization of the obtained suspensions.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Formation and size control of silver nanoparticles by laser ablation in aqueous solution. J. Phys. Chem. B 104, 9111 (2000).CrossRefGoogle Scholar
2Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104, 8333 (2000).CrossRefGoogle Scholar
3Mafuné, F., Kohno, J., Takeda, Y., Kondow, T. and Sawabe, H.: Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J. Phys. Chem. B 105, 5114 (2001).CrossRefGoogle Scholar
4Sakai, T., Takeda, Y., Mafuné, F., Abe, M. and Kondow, T.: Monitoring growth of surfactant-free nanodroplets dispersed in water by single-droplet detection. J. Phys. Chem. B 107, 2921 (2003).CrossRefGoogle Scholar
5Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Nanoscale soldering of metal nanoparticles for construction of higher-order structures. J. Am. Chem. Soc. 125, 1686 (2003).CrossRefGoogle ScholarPubMed
6Simakin, A.V., Voronov, V.V., Shafeev, G.A., Brayner, R. and Bozon-Verduraz, F.: Nanodisks of Au and Ag produced by laser ablation in liquid environment. Chem. Phys. Lett. 348, 182 (2001).CrossRefGoogle Scholar
7Dolgaev, S.I., Simakin, A.V., Voronof, V.V., Shafeev, G.A. and Bozon-Verduraz, F.: Nanoparticles produced by laser ablation of solids in liquid environment. Appl. Surf. Sci. 186, 546 (2002).CrossRefGoogle Scholar
8Tsuji, T., Iryo, K., Nishimura, Y. and Tsuji, M.: Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J Photochem. Photobiol. A 145, 201 (2001).CrossRefGoogle Scholar
9Kabashin, A.V. and Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003).CrossRefGoogle Scholar
10Brust, M., Walker, M., Bethell, D., Schiffrin, D.J. and Whyman, R.: Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system. J. Chem. Soc. Chem. Commun. 7, 801 (1994).CrossRefGoogle Scholar
11Brust, M., Fink, J., Bethell, D., Schiffrin, D.J. and Kiely, C.J.: Synthesis and reactions of functionalized gold nanoparticles. J. Chem. Soc. Chem. Commun. 16, 1655 (1995).CrossRefGoogle Scholar
12Compagnini, G., Scalisi, A.A. and Puglisi, O.: Ablation of noble metals in liquids: A method to obtain nanoparticles in a thin polymeric film. Phys. Chem. Chem. Phys. 4, 2787 (2002).CrossRefGoogle Scholar
13Jordan, R., West, N., Ulman, A., Chou, Y.M. and Nuyken, O.: Nanocomposites by surface-initiated living cationic polymerization of 2-oxazolines on functionalized gold nanoparticles. Macromolecules 34, 1606 (2001).CrossRefGoogle Scholar
14Wang, T., Zhang, D., Xu, W., Li, S. and Zhu, D.: New approach to the assembly of gold nanoparticles: Formation of stable gold nanoparticle ensemble with chainlike structures by chemical oxidation in solution. Langmuir 18, 8655 (2002).CrossRefGoogle Scholar
15Cataliotti, R.S., Compagnini, G., Crisafulli, C., Minicò, S., Pignataro, B., Sassi, P. and Scirè, S.: Low-frequency Raman modes and atomic force microscopy for the size determination of catalytic gold clusters supported on iron oxide. Surf. Sci. 494, 75 (2001).CrossRefGoogle Scholar
16Jia, J., Wang, B., Wu, A., Cheng, G., Li, Z. and Dong, S.: A method to construct a third-generation horseradish peroxidase biosensor: Self-assembling gold nanoparticles to three-dimensional sol-gel network. Anal. Chem. 74, 2217 (2002).CrossRefGoogle ScholarPubMed
17Storhoff, J.J., Elghanian, R., Mucic, C., Mirkin, C.A. and Letsinger, R.L.: One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 120, 1959 (1998).CrossRefGoogle Scholar
18Mafuné, F. and Kondow, T.: Formation of small gold clusters in solution by laser excitation of interband transition. Chem. Phys. Lett. 372, 199 (2003).CrossRefGoogle Scholar
19Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Formation of stable platinum nanoparticles by laser ablation in water. J. Phys. Chem. B 107, 4218 (2003).CrossRefGoogle Scholar
20Mafuné, F., Kohno, J., Takeda, Y. and Kondow, T.: Dissociation and aggregation of gold nanoparticles under laser irradiation. J. Phys. Chem. B 105, 9050 (2001).CrossRefGoogle Scholar
21Compagnini, G., Scalisi, A.A. and Puglisi, O.: Production of gold nanoparticles by laser ablation in liquid alkanes. J. Appl. Phys. 94, 7874 (2003).CrossRefGoogle Scholar
22Takami, A., Kurita, H. and Koda, S.: Laser-induced size reduction of noble metal particles. J. Phys. Chem. B 103, 1226 (1999).CrossRefGoogle Scholar
23Mie, G.: Contributions to the optics of turbid media, especially colloidal metal solutions. Ann. Phys. 25, 377 (1908).CrossRefGoogle Scholar
24Gans, R.: Form of ultramicroscopic particles of silver. Ann. Phys. 47, 270 (1915).CrossRefGoogle Scholar
25Kreibig, U. and Vollmer, M.: Optical Properties of Metal Clusters (Springer, Berlin, Germany, 1995)CrossRefGoogle Scholar
26Link, S. and El-Sayed, M.A.: Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410 (1999).CrossRefGoogle Scholar
27Westcott, S.L., Oldenburg, S.J., Lee, T.R. and Halas, N.J.: Construction of simple gold nanoparticle aggregates with controlled plasmon–plasmon interactions. Chem. Phys. Lett. 300, 651 (1999).CrossRefGoogle Scholar
28Compagnini, G., Fragalà, M.E., D’Urso, L., Spinella, C. and Puglisi, O.: Formation and characterization of high-density silver nanoparticles embedded in silica thin films by in situ self-reduction. J. Mater. Res. 16, 2934 (2001).CrossRefGoogle Scholar