Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T05:34:55.541Z Has data issue: false hasContentIssue false

Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates

Published online by Cambridge University Press:  31 January 2011

Wenzhong Wang
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Oomman K. Varghese
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Chuanmin Ruan
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Maggie Paulose
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Craig A. Grimes
Affiliation:
Department of Electrical Engineering and Department of Materials Science and Engineering, 217 Materials Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802
Get access

Abstract

Crystalline CuO and Cu2O nanowires with an average diameter of about 10 nm and lengths of several tens of microns were successfully synthesized, depending on synthesis conditions, using precursor Cu(OH)2 nanowires as templates. The crystallinity, purity, morphology, and structural features of the as-prepared nanowires were characterized by powder x-ray diffraction, selected-area electron diffraction, and high-resolution transmission electron microscopy. The results showed that the precursor polycrystalline Cu(OH)2 nanowires served as both reactants for the growth of CuO and Cu2O nanowires, and as templates controlling the size and shape of the resulting nanowires.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hu, J.G., Odom, T.W., and Lieber, C.M., Acc. Chem. Res. 32, 435 (1999).CrossRefGoogle Scholar
2.Duan, X.F., Huang, Y., Cui, Y., Wang, J.F., and Lieber, C.M., Nature 409, 66 (2001).CrossRefGoogle Scholar
3.Gudiksen, M.S., Lauhon, L.J., Wang, J.F., Smith, D.C., and Lieber, C.M., Nature 415, 617 (2002).CrossRefGoogle Scholar
4.Duan, X.F., Huang, Y., Agarwal, R., and Lieber, C.M., Nature 421, 241 (2003).CrossRefGoogle Scholar
5.Yang, P. and Lieber, C.M., Science 273, 1836 (1996).CrossRefGoogle Scholar
6.Martel, R., Schmidt, T., Shea, H.R., Hertel, T., and Avouris, P., Appl. Phys. Lett. 73, 2447 (1998).CrossRefGoogle Scholar
7.Yao, Z., Postma, H.W.C., Balents, L., and Dekker, C., Nature 402, 273 (1999).CrossRefGoogle Scholar
8.Jiang, Y., Wu, Y., Zhang, S.Y., Xu, C.Y., Yu, W.C., Xie, Y., and Qian, Y.T., J. Am. Chem. Soc. 122, 12383 (2000).CrossRefGoogle Scholar
9.Zhu, H.W., Xu, C.L., Wu, D.H., Wei, B.Q., Vajtai, R., and Ajayan, P.M., Science 296, 884 (2002).CrossRefGoogle Scholar
10.Campbell, P.M., Snow, E.S., and Novak, J.P., Appl. Phys. Lett. 81, 4586 (2002).CrossRefGoogle Scholar
11.Peng, X., Manna, L., Yang, W., Wickham, J., Sher, E., Kadavanich, A., and Alivisatos, A.P., Nature 404, 59 (2000).CrossRefGoogle Scholar
12.Morales, A.M. and Lieber, C.M., Science 279, 208 (1998).CrossRefGoogle Scholar
13.Holmes, J.D., Johnston, K.P., Doty, R.C., and Korgel, B.A., Science 287, 1471 (2000).CrossRefGoogle Scholar
14.Manna, L., Sher, E.C., and Alivisatos, A.P., J. Am. Chem. Soc. 122, 127000 (2000).CrossRefGoogle Scholar
15.Puntes, V.F., Krishnan, K.M., and Alivisatos, A.P., Science 291, 2115 (2001).CrossRefGoogle Scholar
16.Gudiksen, M.S. and Lieber, C.M., J. Am. Chem. Soc. 122, 8801 (2000).CrossRefGoogle Scholar
17.Thurn-Albrecht, T., Schotter, J., Kästle, G.A., Emley, N., Shibauchi, T., Krusin-Elbaum, L., Guarini, K., Black, C.T., Tuominen, M.T., and Russell, T.P., Science 290, 2126 (2000).CrossRefGoogle Scholar
18.Remskar, M., Mrzel, A., Skraba, Z., Jesih, A., Ceh, M., Demöar, J., Stadelmann, P., Lëvy, F., and Mihailovic, D., Science 292, 479 (2001).CrossRefGoogle Scholar
19.Ma, R., Bando, Y., and Sato, T., Adv. Mater. 14, 366 (2002).3.0.CO;2-Q>CrossRefGoogle Scholar
20.Nath, M. and Rao, C.N.R., Angew. Chem., Int. Ed. 41, 3451 (2002).3.0.CO;2-2>CrossRefGoogle Scholar
21.Hacohen, Y. Rosenfeld, Popovitz-Brio, R., Grunbaum, E., Prior, Y., and Tenne, R., Adv. Mater. 14, 1075 (2002).3.0.CO;2-H>CrossRefGoogle Scholar
22.Dai, Z.R., Pan, Z.W., and Wang, Z.L., Adv. Fun. Mater. 13, 9 (2003).CrossRefGoogle Scholar
23.Wang, W.Z., Wang, G.H., Wang, X.S., Zhan, Y.J., Liu, Y.K., and Zheng, C.L., Adv. Mater. 14, 67 (2002).3.0.CO;2-Z>CrossRefGoogle Scholar
24.Jiang, C.C., Herricks, T., and Xia, Y., Nano Lett. 2, 1332 (2002).Google Scholar
25.Rakhshani, A.E., Solid-State Electron. 29, 7 (1986).CrossRefGoogle Scholar
26.Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.J., Wang, Y.Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
27.Poizot, P., Laruell, S., Grugeon, S., Dupont, L., and Taracon, J.M., Nature 407, 496 (2000).CrossRefGoogle Scholar
28.Briskman, R.N., Sol. Energy Mater. Sol. Cells 27, 361 (1992).CrossRefGoogle Scholar
29.Snoke, D., Science 273, 1351 (1996).CrossRefGoogle Scholar
30.JCPDS 13-420 (International Center for Diffraction Data, Newton Square, PA, 1972).Google Scholar
31.JCPDS 5-661 (International Center for Diffraction Data, Newton Square, PA, 1967).Google Scholar
32.JCPDS 5-666 (International Center for Diffraction Data, Newton Square, PA, 1967).Google Scholar
33.Clemente, R.R., Serna, C.J., Ocana, M., and Matijevic, E., J. Cryst. Growth 143, 277 (1994).CrossRefGoogle Scholar
34.Oswald, H.R., Reiler, A., Schmalle, H.W., and Dubler, F., Acta Crystallogr., Sect. C 46, 2279 (1990).CrossRefGoogle Scholar
35.Luo, J., Zhang, L., and Zhu, J., Adv. Mater. 15, 579 (2003).CrossRefGoogle Scholar