Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T20:56:58.595Z Has data issue: false hasContentIssue false

Synthesis of cobalt-doped bismuth vanadate by combustion-synthesis: Influence of fuel on phase content and morphology

Published online by Cambridge University Press:  31 January 2011

Banasri Roy*
Affiliation:
Department of Materials and Metallurgical Engineering, New Mexico Institute of Technology, Socorro, New Mexico 87801
Paul A. Fuierer
Affiliation:
Department of Materials and Metallurgical Engineering, New Mexico Institute of Technology, Socorro, New Mexico 87801
*
a) Address all correspondence to this author.e-mail: [email protected]
Get access

Abstract

Cobalt (15 at.%) doped bismuth vanadate, Bi4(V0.85Co0.15)2O11-δ (BICOVOX0.15), is known to have high oxygen ion conduction in the medium temperature range (400–600 °C). Small grain size may be important in stabilizing the highly conductive and disordered γ-phase at lower temperature. In this article, we report for the first time the synthesis of highly porous nanoscale BICOVOX powders by a solution combustion technique. The effects of fuel-to-oxidizer ratio, and postcombustion heat treatment temperature and time on the phase content and microstructure of the powders were investigated. As-combusted powders were revealed to be a mixture of Bi2O3, BiVO4, and γ-BICOVOX phases that were converted to phase pure γ-BICOVOX during heat treatment.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Krok, F., Bogusz, W., Kurek, P., Wasiucionek, M., Jakubowski, W., and Dygas, J.: Influence of preparation procedure on some physical properties of BICUVOX. Mater. Sci. Eng., B 21, 70 (1993).Google Scholar
2.Abrahams, I., Krok, F., and Nelstrop, J.A.G.: Defect structure of quenched γ-BICOVOX by combined x-ray and neutron powder diffraction. Solid State Ionics 90, 57 (1996).CrossRefGoogle Scholar
3.Kezionis, A., Bogusz, W., Krok, F., Dygas, J., Orliukas, A., Abrahams, I., and Gebicki, W.: Relaxation dispersion of ionic conductivity of BICOVOX. Solid State Ionics 119, 145 (1999).CrossRefGoogle Scholar
4.Guillodo, M., Fouletier, J., Dessemond, L., and allo, P. Del: Redox stability of BIMEVOX.10 materials. Electrochim. Acta 47, 2809 (2002).CrossRefGoogle Scholar
5.Castro, A., Millan, P., Ricote, J., and Pardo, L.: Room temperature stabilization of γ-Bi2VO5.5 and synthesis of the new fluorite phase f- Bi2VO5 by a mechanochemical activation method. J. Mater. Chem. 10, 767 (2000).Google Scholar
6.Mairesse, G.: Advances in oxygen pumping concept with BIMEVOX. C.R. Acad. Sci. Paris, t.2. Series II, 651 (1999).Google Scholar
7.Chetouani, A., Taouk, B., Bordes-Richard, E., Abi-Aad, E., and Abokais, A.: Correlation between EPR and TPD characterization and catalytic activity of BIMEVOX in oxidation of propene. Appl. Catal., A 252, 269 (2003).CrossRefGoogle Scholar
8.Abraham, F., Debreuille-Gresse, M.F., Mairesse, G., and Nowogrocki, G.: Phase transitions and ionic conductivity in Bi4V2O11 an oxide with a layered structure. Solid State Ionics 28–30, 529 (1988).CrossRefGoogle Scholar
9.Mairesse, G., Roussel, P., Vannier, R.N., Anne, M., and Nowogrocki, G.: Crystal structure determination of α-, β-, and γ-Bi4V2O11 polymorphs. Part II: Crystal structure of α-Bi4V2O11. Solid State Sci. 5, 861 (2003).Google Scholar
10.Muller, C., Chateigner, D., Anne, M., Bacmann, M., Fouletier, J., and Rango, P.: Pressure and magnetic field effects on the crystallographic texture and electrical conductivity of the Bi4(V0.85Co0.15)2O11-δcompound. J. Phys. D: Appl. Phys. 29, 3106 (1996).Google Scholar
11.Steil, M.C., Fouletier, J., Kleitz, M., and Labrune, P.: BICOVOX: Sintering and grain size dependence of the electrical properties. J. Eur. Ceram. Soc. 19, 815 (1999).CrossRefGoogle Scholar
12.Hervoches, C.H., Steil, M.C., and Muccillo, R.: Synthesis by the polymeric precursor technique of Bi2Co0.1V0.9O5.35 and electrical properties dependence on crystallite size. Solid State Ionics 6, 173 (2004).Google Scholar
13.Lazure, S., Vannier, R-N., Nowogrocki, G., Mairesse, G., Muller, C., Anne, M., and Strobel, P.: BICOVOX family of oxide anion conductors: Chemical electrical and structural studies. J. Mater. Chem. 5(9), 1395 (1995).Google Scholar
14.Roy, B. and Fuierer, P.A.: Molten salt synthesis of Bi4(V0.85 Co0.15)2O11-δ(BICOVOX) ceramic powders. J. Am. Ceram. Soc. 92(2), 520 (2009).Google Scholar
15.Pirovano, C., Steil, M.C., Capoen, E., Nowogrocki, G., and Vannier, R.N.: Impedence study of the microstructure dependence of the electrical properties of BIMEVOXes. Solid State Ionics 176, 2079 (2005).Google Scholar
16.Pell, J.W., Ying, J.Y., and Loye, H.C. zur: Sol-gel synthesis of α-Bi2VO5.5 using a soluble bismuth precursor. Mater. Lett. 25(3–4), 157 (1995).CrossRefGoogle Scholar
17.Bhattacharya, A.K. and Mallick, K.K.: Low-temperature synthesis of a bismuth vanadium-oxide isomorphous with gamma-Bi4V2O11. Solid State Commun. 91, 357 (1994).CrossRefGoogle Scholar
18.Gasgnier, M., Petit, A., Gardette, M-F., Riviere, E., Launay, S., Dworkin, A., and Toscani, S.: Synthesis of Bi(Cu)VOx compounds by means of a monomode microwave crystallographic, calorimetric, electrical and low temperature magnetic properties. J. Alloys Compd. 309, 219 (2000).CrossRefGoogle Scholar
19.Patil, K.C.: Advanced ceramics: Combustion synthesis and properties. Bull. Mater. Sci. 16(6), 533 (1993).Google Scholar
20.Patil, K.C., Aruna, S.T., and Mimani, T.: Combustion synthesis: An update. Curr. Opin. Solid State Mater. Sci. 6, 507 (2002).Google Scholar
21.Sekar, M. and Patil, K.C.: Combustion synthesis and properties of fine-particle dielectric oxide materials. J. Mater. Chem. 2(7), 739 (1992).Google Scholar
22.Bosze, E.J., McKittrick, J., and Hirata, G.A.: Investigation of the physical properties of a blue-emitting phosphor produced using a rapid exothermic reaction. Mater. Sci. Eng., B 97, 265 (2003).Google Scholar
23.Jacobsohn, L.G., Blair, M.W., Tornga, S.C., Brown, L.O., Bennett, B.L., and Muenchausen, R.E.: Y2O3:Bi nanophosphor: Solution combustion synthesis, structure, and luminescence. J. Appl. Phys. 104(12), 124303 (2008).Google Scholar
24.Shuk, P., Wiemhofer, H-D., Guth, U., Gopel, W., and Greenblatt, M.: Oxide ion conducting electrolytes based on Bi2O3. Solid State Ionics 89(3–4), 179 (1996).CrossRefGoogle Scholar
25.Watanabe, A.: Is it possible to stabilize δ-Bi2O3 by an oxide additive? Solid State Ionics 40/41(2), 889 (1990).Google Scholar
26.Zavyalova, A.A. and Imamov, R.M.: The structure of β-Bi2O2.5 thin films. Sov. Phys. Crystallogr. 16(3), 437 (1971).Google Scholar
27.Capoen, E., Steil, M.C., Nowogrocki, G., Malys, M., Pirovano, C., Lofberg, A., Bordes-Richard, E., Boivin, J.C., Mairesse, G., and Vannier, R.N.: Oxygen permeation in bismuth-based materials. Part I: Sintering and oxygen permeation fluxes. Solid State Ionics 177, 483 (2006).Google Scholar
28.Shea, L.E., McKittrick, J., Lopez, O.A., and Sluzky, E.: Synthesis of red-emitting, small particle size luminescent oxides using an optimized combustion process. J. Am. Ceram. Soc. 79(12), 3257 (1996).Google Scholar
29.Perry, R.H. and Green, G.W.: Chemical Engineering Handbook, 7th ed. (McGraw-Hill, New York, 1997), pp. 2189, 2–198.Google Scholar
30.Speight, J.G.: Lange's Hand Book of Chemistry, 16th ed. (McGraw-Hill, New York, 1998), pp. 2.537, 2.560.Google Scholar
31.Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M., and Boatner, L.A.: Formation enthalpies of rare earth titanate pyrochlores. J. Solid State Chem. 177, 1858 (2004).Google Scholar
32.Fuierer, P., Maier, R., Roder-Roith, U., and Moos, R.: A comparative study of the synthesis, physical and electrical characteristics of several BIMEVOX ceramics. J. Am. Ceram. Soc. (2009) (submitted).Google Scholar