Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T19:48:05.390Z Has data issue: false hasContentIssue false

Synthesis of CdSe magic-sized nanocluster and its effect on nanocrystal preparation in a microfluidic reactor

Published online by Cambridge University Press:  01 November 2004

Hongzhi Wang
Affiliation:
Micro-space Chemistry Lab, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-052, Japan
Asuka Tashiro
Affiliation:
Department of Chemistry and Applied Chemistry, Saga University, Honjo-machi, Saga-city, Saga 840-8502, Japan
Hiroyuki Nakamura
Affiliation:
Micro-space Chemistry Lab, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-052, Japan
Masato Uehara
Affiliation:
Micro-space Chemistry Lab, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-052, Japan
Masaya Miyazaki
Affiliation:
Micro-space Chemistry Lab, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-052, Japan
Takanori Watari
Affiliation:
Department of Chemistry and Applied Chemistry, Saga University, Honjo-machi, Saga-city, Saga 840-8502, Japan
Hideaki Maeda*
Affiliation:
Micro-space Chemistry Lab, National Institute of Advanced Industrial Science and Technology (AIST), Saga 841-052, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

CdSe magic-sized nanoclusters were synthesised at relatively low temperatures (90–150 °C) in the organometallic raw material solution by a very simple method. The variation process from nanoclusters to nanocrystals has been determined using the microreactor, and it was found that these nanoclusters could increase the CdSe nuclei number and product yield in the microfluidic reactor method. Meanwhile, the microreactor shows the advantage for studying the nanocrystal-growth process due to the precise time and temperature control and high reproducibility.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Qu, L. and Peng, X.: Control of photoluminescence properties of CdSe nanocrystals in growth. J. Am. Chem. Soc. 124, 2049 (2002).CrossRefGoogle ScholarPubMed
2Peng, Z.A. and Peng, X.: Mechanisms of the shape evolution of CdSe nanocrystals. J. Am. Chem. Soc. 123, 1389 (2001).CrossRefGoogle Scholar
3Murray, C.B., Norris, D.J. and Bawendi, M.G.: Synthesis and characterization of nearly monodisoerse CdE semiconductor nanocrystalllites. J. Am. Chem. Soc. 115, 8706 (1993).CrossRefGoogle Scholar
4Trindade, T. and O’Brien, P.: A single source approach to the synthesis of CdSe nanocrystallites. Adv. Mater. 8, 161 (1996).CrossRefGoogle Scholar
5Talapin, D.V., Rogach, A.L., Kornowski, A., Haase, M. and Weller, H.: Highly luminescent monodisperse CdSe and CdSe/ZnS nanocrystals synthesized in a hexadecylamine-trioctylphosphine oxide-trioctylphospine mixture. Nano Lett. 1, 207 (2001).CrossRefGoogle Scholar
6Herron, N., Calabrese, J.C., Farneth, W.E. and Wang, Y.: Crystal structure and optical properties of Cd32S14(SC6H5)36⋅DMF4, a cluster with a 15 angstrom CdS core. Science 259, 1426 (1993).CrossRefGoogle ScholarPubMed
7Behrens, S., Bettenhausen, M., Deveson, A.C., Eichhofer, A., Fenske, D., Lohde, A. and Woggon, U.: Synthesis and structure of the nanoclusters Hg32Se14(SePh)36. Angew. Chem. Int. Ed. Engl. 35, 2215 (1996).CrossRefGoogle Scholar
8Behrens, S., Bettenhausen, M., Eichhofer, A. and Fenske, D.: Synthesis and crystal structure of [Cd10Se(SePh)12(PPh3)4] and Cd16(SePh)32(PPh3)2. Angew. Chem. Int. Ed. Engl. 36, 2797 (1997).CrossRefGoogle Scholar
9Dance, I.G., Choy, A. and Scudder, M.L.: Syntheses, properties, and molecular and crystal structures of (Me4N)4[E4M10(SPh)16]: Molecular supertetrahedral fragments of the cubic metal chalcogenide latttice. J. Am. Chem. Soc. 106, 6285 (1984).CrossRefGoogle Scholar
10Peng, Z.A. and Peng, X.: Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 124, 3343 (2002).CrossRefGoogle ScholarPubMed
11Cumberland, S.L., Hanif, K.M., Javier, A., Khitrov, G.A., Strouse, G.F., Woessner, S.M. and Yun, C.S.: Inorganic clusters as single-source precursors for preparation fo CdSe, ZnSe, and CdSe/ZnS nanomaterials. Chem. Mater. 14, 1576 (2002).CrossRefGoogle Scholar
12Nakamura, H., Yamaguchi, Y., Miyazaki, M., Maeda, H., Uebara, M. and Mulvaney, P.: Preparation of CdSe nanocrystals in a micro-flow-reactor. Chem. Commun. 23, 2844 (2002).CrossRefGoogle Scholar
13Chan, E.M., Mathies, R.A. and Alivisatos, A.P.: Size-controlled growth of CdSe nanocrystals in microfluidic reactors. Nano Lett. 3, 199 (2003).CrossRefGoogle Scholar
14Dushkin, C.D., Saita, S., Yoshie, K. and Yamaguchi, Y.: The kinetics of growth of semiconductor nanocrystals in a hot amphiphile matrix. Adv. Colloid Interface Sci. 88, 37 (2000).CrossRefGoogle Scholar
15Nakamura, H., Tashiro, A., Yamaguchi, Y., Miyazaki, M., Watari, T., Shimizu, H. and Maeda, H.: Application of a microfluidic reaction system for CdSe nanocrystal preparation. Lab on a Chip 4, 237 (2004).CrossRefGoogle ScholarPubMed
16Wang, H.Z., Li, X.Y., Uehara, M., Yamaguchi, Y., Nakamura, H., Miyazaki, M., Shimizu, H. and Maeda, H.: Continuous synthesis of CdSe–ZnS composite nanoparticles in a microfluidic reactor. Chem. Commun. 1, 48 (2004).CrossRefGoogle Scholar
17Wang, H.Z., Nakamura, H., Uehara, M., Yamaguchi, Y., Miyazaki, M. and Maeda, H.: Highly luminescent CdSe/ZnS nanocrystals synthesized by a single molecular ZnS source in a microfluidic reactor. Adv. Funt. Mater. (in press).Google Scholar