Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T03:31:10.892Z Has data issue: false hasContentIssue false

Synthesis of BaAl2Si2O8 from solid Ba–Al–Al2O3–SiO2 precursors: Part III. The structure of BaAl2Si2O8 formed by annealing at ≤650 °C and at 1650 °C

Published online by Cambridge University Press:  31 January 2011

Xiao-Dong Zhang
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Kenneth H. Sandhage
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Hamish L. Fraser
Affiliation:
Department of Materials Science and Engineering, The Ohio State University, Columbus, Ohio 43210
Get access

Abstract

Analytical TEM and HREM have been used to examine the structure of BaAl2Si2O8 crystals produced within oxidized Ba–Al–Al2O3–SiO2 precursors upon annealing: (i) at ≤650 °C and (ii) up to 1650 °C. A BaAl2Si2O8 polymorph with a c-axis parameter of 15.6 Å was detected after annealing at ≤650 °C. Stacking faults and antiphase boundaries were detected within this polymorph after the 650 °C treatment. After a 15 h heat treatment at 1650 °C, convergent beam diffraction patterns and HREM confirmed that the predominant phase was β–hexacelsian. Although antiphase boundaries were absent in the β–hexacelsian crystals, dislocations and stacking faults were detected after the 1650 °C anneal. The generation of defects in BaAl2Si2O8 crystals within specimens annealed at ≤650 °C and at 1650 °C is discussed in light of prior structural analyses.

Type
Articles
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bansal, N. P and Setlock, J. A., in HITEMP Review-1990: Advanced High Temperature Engine Materials Technology Program, NASA CP 10051, Oct. 1990, pp. 59–1–59–15.Google Scholar
2.Murthy, V. S. R. and Lewis, M. H., Br. Ceram. Trans. J. 89 (5), 173174 (1990).Google Scholar
3.IIIDrummond, C. H and Bansal, N. P., Ceram. Eng. Sci. Proc. 11 (7–8), 10721086 (1990).CrossRefGoogle Scholar
4.Buzniak, J. J., Lagerlöf, K. P. D., Bansal, N. P., pp. 789801 in Advances in Ceramic–Matrix Composites II, Ceram. Trans., edited by Singh, J. P. andBansal, N. P. (The American Ceramic Society, Westerville, OH, 1993), Vol. 38.Google Scholar
5.Bansal, N. P., 17th Conference on Metal Matrix, Carbon, and Ceramic Matrix Composites, NASA Conf. Publ. No. 3235, edited by Buckley, J. D., Part 2, 1994, pp. 773797.Google Scholar
6.Lin, H. C and Foster, W. R., Am. Miner. 53, 134144 (1968).Google Scholar
7.Wong-Ng, W., McMurdie, H., Paretzkin, B, Hubbard, C., and Dragoo, A., Powder Diff. 2 (2),107 (1987).Google Scholar
8.JCPDS Cards: #28–125 for hexagonal BaA12Si2O8; #38–1450 for monoclinic BaA12Si2O8; #12–725 for orthorhombic (pseudohexagonal) BaA12Si2O8.Google Scholar
9.Seanu, T., Guglielmi, J., and Colomban, Ph., Solid State Ionics 70/71, 109120 (1994).Google Scholar
10.Starezewski, M., Prace Inst. Hutniczych 14, 6974 (1962).Google Scholar
11.Oehlschlegel, G. and Glastech, W. Ohnmacht. Ber. 48 (11), 232236 (1975).Google Scholar
12.Levin, E. M and McMurdie, H. F., Phase Diagrams for Ceramists, 1975 Supplement (The American Ceramic Society, Westerville, OH, 1975), Fig. 4544.Google Scholar
13.Semler, C. E and Foster, W. R., J. Am. Ceram. Soc. 53 (11), 595598 (1970).CrossRefGoogle Scholar
14.Lin, H. C and Foster, W. R., J. Am. Ceram. Soc. 53 (10), 549551 (1970).CrossRefGoogle Scholar
15.Foster, W. R and Lin, H. C., Am. J. Sci. 267–A (1, 2), 134144 (1969).Google Scholar
16.Lin, H. C and Foster, W. R., Mineral. Mag. 37 (288), 459465 (1969).CrossRefGoogle Scholar
17.Thomas, R. H.J. Am. Ceram. Soc. 33 (2), 3544 (1950).CrossRefGoogle Scholar
18.Pickup, H. and Brook, R. J. in Engineering with Ceramics 2, Brit. Ceram. Proc., edited by Freer, R., Newsam, S., and Syers, G. (The Institute of Ceramics, Shelton, UK, 1987), No. 39, pp. 6976.Google Scholar
19.Bandyopadhyay, A., Quander, S. W., Aswath, P. B., Freitag, D. W., Richardson, K. K., and Hunn, D. L., Scripta Met. Mat. 32 (9), 14171422 (1995).CrossRefGoogle Scholar
20.Bandyopadhyay, A., Aswath, P. B., Porter, W. D., and Cavin, O. B., J. Mater. Res. 10, 12561263 (1995).CrossRefGoogle Scholar
21.Bandyopadhyay, A. and Aswath, P. B., J. Mater. Res. 10, 31433148 (1995).CrossRefGoogle Scholar
22.Hwang, C. J and Newman, R. A., J. Mater. Sci. 31 (1), 150 (1996).CrossRefGoogle Scholar
23.Yu, F., Ortiz-Longo, C.R. and White, K. W., in Advances in Ceramic-Matrix Composites III, Ceram. Trans., edited by Bansal, N. P. and Singh, J. P. (The American Ceramic Society, Westerville, OH, 1996), Vol. 74, pp. 203214.Google Scholar
24.Corral, J. S. Moya and Verduch, A. Garcia, Trans. J. Br. Ceram. Soc. 77 (2), 4044 (1978).Google Scholar
25.Zaykoski, J. A and Talmy, I. G., Ceram. Eng. Sci. Proc. 15 (9–10), 779786 (1994).Google Scholar
26.Smith, J. V. and Brown:, W. L.Feldspar Mineralogy, Vol. 1, Crystal Structure, Physical, Chemical and Microtextural Properties (Springer-Verlag, Berlin, 1988);CrossRefGoogle Scholar
Feldspar Mineralogy, Vol. 2, Reviews in Mineralogy, edited by Ribbe, P. H. (The Mineralogical Society of America, Washington, D.C., 1983).CrossRefGoogle Scholar
27.Talmy, I. G and Haught, D. A., 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1, 1990, pp. 227238.Google Scholar
28.Talmy, I. G., Haught, D. A., and Wuchina, E. J., in Critical Materials and Processing in a Changing World, Proc. 6th International SAMPE Electronics Conf., edited by Goldberg, A. B., Harper, C. A., Schroeder, M. S., and Ibrahim, A. M. (Society for the Advancement of Material and Process Engineering, Covina, CA, 1992), Vol. 6, pp. 687698.Google Scholar
29.Wuchina, E. J and Talmy, I. G., 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1, 1990, pp. 239250.Google Scholar
30.Smith, J. V., Acta Crystallogr. 6, 613620 (1953).CrossRefGoogle Scholar
31.Bakakin, V. V and Below, N. V., Soviet. Phys.-Cryst. 5, 826829 (1961).Google Scholar
32.Chiari, G., Gazzoni, G., Craig, J. R., Gibbs, G. V., and Louisnathan, S. J., Am. Mineral., 969974 (1985).Google Scholar
33.Newnham, R. E and Megaw, H. D., Acta Crystallogr. 13 (4), 303312 (1960).CrossRefGoogle Scholar
34.Griffen, D. T and Ribbe, P. H., Am. Mineral. 61 (5, 6), 414418 (1976).Google Scholar
35.Ito, T., Sadanaga, R., and Takeuchi, Y., X-ray Studies on Polymorphism (Maruzen Co., Tokyo, 1950), pp. 1929.Google Scholar
36.Yoshiki, B. and Matsumoto, K., J. Am. Ceram. Soc. 34 (9), 283286 (1951).CrossRefGoogle Scholar
37.Takeuchi, Y., Min. J. Jpn. 2 (5), 311332 (1958).Google Scholar
38.Müller, W. F., in Electron Microscopy in Mineralogy, edited by Wenk, H-R. (Springer-Verlag, New York, 1976), pp. 354360.CrossRefGoogle Scholar
39.Müller, W. F., Phys. Chem. Minerals 1 (10), 7182 (1977).CrossRefGoogle Scholar
40.Caja, L. Martinez, Corral, J. S. Moya, and Verduch, A. Garcia, Bol. Soc. Esp. Ceram. Vidrio 13 (5), 441443 (1974).Google Scholar
41.Bahat, D., J. Mater. Sci. 5 (9), 805810 (1970).CrossRefGoogle Scholar
42.IIIDrummond, C. H., Lee, W. E., Bansal, N. P., and Hyatt, M. J., Ceram. Eng. Sci. Proc. 10 (9–10), 14851502 (1989).CrossRefGoogle Scholar
43.Chen, M., Lee, W. E., and James, P. F., J. Non-Cryst. Solids 130 (3), 322325 (1991).CrossRefGoogle Scholar
44.Lee, W. E., Chen, M., and James, P. F., J. Am. Ceram. Soc. 78 (8), 21802186 (1995).CrossRefGoogle Scholar
45.Liu, C., Komarneni, S., and Roy, R., J. Am. Ceram. Soc. 78 (9), 25212526 (1995).CrossRefGoogle Scholar
46.Wuchina, E. J and Talmy, I. G., 14th Conference on Composite Materials and Structures, NASA Conf. Publ. No. 3097, Part 1, 1990, pp. 239250.Google Scholar
47.El-Shennawi, A. W. A., Omar, A. A., and Khater, G. A., Glass Technol. 32 (4), 131137 (1990).Google Scholar
48.Barrer, R. M and Mainwaring, D. E., J. Chem. Soc. (Dalton Trans.), (6), 22962305 (1964).Google Scholar
49.Bahat, D., J. Mater. Sci. 4 (10), 855860 (1969).CrossRefGoogle Scholar
50.Bansal, N. P and Hyatt, M. J., J. Mater. Res. 4, 12571265 (1989).CrossRefGoogle Scholar
51.Bansal, N. P., Hyatt, M. J., and IIIDrummond, C. H., Ceram. Eng. Sci. Proc. 12 (7–8), 12221234 (1991).CrossRefGoogle Scholar
52.Chen, M., Lee, W. E., and James, P. F., J. Non-Cryst. Solids 147–148, 532536 (1992).CrossRefGoogle Scholar
53.Du, Y-J., Holland, D., and Pittson, R., Phys. Chem. Glasses 34 (3), 104108 (1993).Google Scholar
54.Debsikdar, J. C., Ceram. Eng. Sci. Proc. 14 (1–2), 405415 (1993).CrossRefGoogle Scholar
55.Chen, M., James, P. F., and Lee, W. E., J. Sol-Gel. Sci. Technol. 1, 99111 (1994).CrossRefGoogle Scholar
56.Hoghooghi, B., McKittrick, J., Butler, C, Helsel, E., and Lopez, O., in Better Ceramics Through Chemistry VI, edited by Cheetham, A. K., Brinker, C. J., McCartney, M. L., and Sanchez, C. (Mater. Res. Soc. Symp. Proc. 346, Pittsburgh, PA, (1994)), pp. 493498.Google Scholar
57.Hoghooghi, B., McKittrick, J., Butler, C, P. Desch, J. Non-Cryst. Solids 170 (3), 303307 (1994).CrossRefGoogle Scholar
58.Barrer, R. M and Mainwaring, D. E., J. Chem. Soc. (Dalton Trans.), (12), 12591265 (1972).CrossRefGoogle Scholar
59.Ovramenko, N. A., Kornilovich, B. Yu, and Ovcharenko, F. D., Dokl. Akad. Nauk SSSR 234 (5), 10971099 (1977).Google Scholar
60.Sorrell, C. A., Am. Mineral. 47 (3, 4), 291309 (1962).Google Scholar
61.Planz, J. E. and Müller-Hesse, H., Ber. Dtsch. Keram. Ges. 40 (3), 191–20 (1963).Google Scholar
62.Segnit, E. R. and Gelb, T., J. Aust. Ceram. Soc. 6 (1), 1218 (1970).Google Scholar
63.Hennicke, H. W. and Kowsiridse, S., Keram. Z. 33 (7), 398401 (1981).Google Scholar
64.Villar, M. C. Guillem, Monzonis, C. Guillem, and Navarro, J. Alarcón, Trans. J. Br. Ceram. Soc. 82 (2), 6972 (1983).Google Scholar
65.Talmy, I. G and Haught, D. A., “Synthesis of High-Purity Monoclinic Celsian from Topaz at Low Temperature,” U.S. Patent #4,994,419, Feb. 19, 1991.Google Scholar
66.Nordmann, A., Cheng, Y-B., and Muddle, B. C., J. Euro. Ceram. Soc. 15, 787794 (1995).CrossRefGoogle Scholar
67.Lee, K-T. and Aswath, P. B., “Formation Mechanisms of Hexacelsian Barium Aluminosilicate from Mixtures of BaCO3, A12O3 and SiO2,” paper #B-145–96 presented at the 98th Annual American Ceramic Society Meeting, Indianapolis, IN, April 17, 1996.Google Scholar
68.Zhang, X-D., Sandhage, K. H., and Fraser, H. L., “Synthesis of BaAl2Si2O8 from Solid Ba–Al–Al2O3–SiO2 Precursors: Part II. TEM Analyses of Phase Evolution,” J. Am. Ceram. Soc. (in press).Google Scholar
69.Allameh, S. M and Sandhage, K. H., J. Am. Ceram. Soc. 80 (12), 31093126 (1997).CrossRefGoogle Scholar
70.Loretto, M. H., Electron Beam Analysis of Materials (Chapman and Hall, London, 1984), pp. 140141.CrossRefGoogle Scholar
71.Oehlschlegel, G., Kockel, A., and Biedl, A., Glastechn. Ber. 47 (3), 3141 (1974).Google Scholar